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Phase separation of rigid-rod suspensions in shear flow
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We analyze the behavior of a suspension of rigid-rod-like particles in shear flow using a modified version of
the Doi model, and construct diagrams for phase coexistence under conditions of constant imposed stress and
constant imposed strain rate, among paranematic, flow-aligning nematic, and log-rolling nematic states. We
calculate the effective constitutive relations that would be measured through the regime of phase separation
into shear bands. We calculate phase coexistence by examining the stability of interfacial steady states and find
a wide range of possible ‘‘phase’’ behaviors.@S1063-651X~99!06810-5#

PACS number~s!: 83.70.Jr, 64.70.Md, 83.20.Hn, 64.10.1h
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I. INTRODUCTION

Shear flow has profound effects on complex fluids. It c
perturb equilibrium phase transitions, such as the isotro
to-nematic (I -N) liquid crystalline transition in wormlike
micelles @1–3#, thermotropic melts@4–7#, or rigid-rod sus-
pensions@8,9#; the nematic-smectic transition in thermotr
pic liquid crystals@10#; and the isotropic-to-lamellar trans
tion @11# in surfactant systems. Shear can also indu
structures, such as the well-known multilamellar vesic
~onions! in surfactant systems@12–14#, that exist only as
metastable equilibrium phases. Another well-known effec
the transition between orientations of diblock copolym
lamellae in either the steady shear flow@15,16#, or the oscil-
latory shear flow@17–19#, as a function of shear rate o
frequency, and temperature.

A related phenomenon is dynamic instability in no
Newtonian fluids whose theoreticalhomogeneousstress–
strain-rate constitutive relations exhibit multivalued beha
ior, as in theories of polymer melts@20,21# and wormlike
micelles @22–24#. Such models may describe, for examp
the spurt effect, whereby the flow rate of a fluid in a pi
changes discontinuously as a function of applied press
drop @25#. A nonmonotonic constitutive curve as in Fig.
typically has a segment~shown as a broken line! where bulk
flow is unstable. If a mean strain rate is imposed wh
forces the system to lie on an unstable part of the constitu
relation, a natural resolution for this instability is to break t
system into two regions, often calledbands, one on the high
strain rate branch and one on the low strain-rate branch
maintain the overall applied strain rate. The most import
unresolved question about these banded flows is, what d
mines the stress at which the system phase separates
bands? Experiments on many systems~reviewed in Sec. II
A!, particularly the wormlike micelle surfactant systems,
veal that there is a well-defined and reproducible selec
stress in a wide class of systems.

There have been many suggestions for determining
selected stress. Some workers have assumed the existen
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a nonequilibrium potential and a variational princip
@26,27#. This possibility is intriguing, although it remain
unproven. Early studies postulated a jump at the top of
stable viscous branch~‘‘top jumping’’ ! @21,22,28#, but ex-
periments have shown that this is not the case@29#. Recent
studies have solved the homogeneous flow equations in v
ous geometries using sophisticated hydrodynamic flo
solvers and found a selected stress@30,31#. However, evi-
dence is growing@32# that these calculations have histor
dependent stress selection~which is in fact no selection! or
introduce gradient terms due to the discretization of the s
tem. A final method, which we follow here, has been
incorporate~physically present! nonlocal contributions to the
stress@5,6,33,34,9,32,35–37#, and examine the equations o
motion under steady banded flow conditions.

Here we extend previous work@9# and calculate phase
diagrams for rigid-rod suspensions in shear flow, solving
the interfacial profile between phases and using its prope
to determine the coexistence stress. As Fig. 1 indica
phase separation is possible ateithera specified stress~hori-
zontal tie lines! or a specified strain rate~vertical tie lines!.
Only recently has the latter possibility been speculated u

FIG. 1. Stress–strain-rate curves for the Doi model with diff
ent excluded volume parametersu ~taken from Fig. 3 below!. The
dashed line segments are unstable~unphysical! steady states. The
straight lines indicate possible coexistence between statesI and II
under conditions of common stress~horizontal lines! or strain rate
~vertical line!.
4397 © 1999 The American Physical Society
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@28,9,27#, and found experimentally@38#. We explore this
possibility explicitly for our model system, which possess
in addition to the high and low strain-rate~paranematic and
nematic, respectively! branches shown in Fig. 1, a secon
high strain-rate branch in which the rods stand up in
flow, parallel to the vorticity direction, instead of lying in th
shear plane@39#. We study coexistence with this so-calle
‘‘log-rolling’’ phase and find a rich nonequilibrium phas
diagram.

The summary of this paper is as follows. In Sec. II w
discuss the general issues of shear banding and phase
ration in flow, and summarize the primary experimental e
dence for this behavior. In Sec. III we present the modifi
Doi model @40,41# and in Sec. IV we briefly discuss ou
algorithm for calculating the phase diagram. The general
pects of the interface construction will be discussed e
where @35#. We present the results for common stress- a
strain-rate phase separation in Secs. V and VI, respectiv
and discuss some of the implications for metastability a
experiments under controlled stress or controlled strain-
conditions. We finish in Sec. VII with a discussion and su
mary. While some of these results have been briefly sum
rized elsewhere@42#, the current paper is a complete an
self-contained discussion of the problem.

The reader interested in the phenomenology of phase
grams for sheared complex fluids rather than liquid crys
may safely skip Sec. III; the rest of the paper is general,
much of the discussion applies to any system undergo
phase separation in shear flow. There are, essentially,
steps to calculating phase behavior in flow. One must de
the dynamical equations of motion for fluid flow, compos
tion, and the relevant structural order parameter~s!, which is
quite difficult. Then, one must understand how to solve th
and interpret the results. While the modified Doi model do
not exhaust all possible phase diagrams~in particular, a
shear-thickening model would be a nice complement!, it has
many universal features. One extremely important concep
that density and field variables are ill-defined in nonequil
rium systems:eitherstressor strain rate may act as a contr
parameter analogous to an equilibrium field variable~e.g.,
pressure, chemical potential!, corresponding to the differen
orientations of the interface between coexisting phases. A
one can gain much intuition from the underlying stres
strain-rate–compositionsurface, a fact which we feel has
been underappreciated until now.

II. SHEAR BANDING

A. Experimental evidence

Shear banding has been confirmed in many syst
through direct optical and NMR visualization, and deduc
from rheological measurements. The best-studied syst
are surfactant solutions of various kinds, including wormli
micelles and onion-lamellar phases. Rehage and Hoffm
@24# measured a plateau in the stress–strain-rate relation
wormlike micelles in shear flow. This behavior has sin
been seen in a number of wormlike micellar systems in v
ous flow geometries, by the Montpellier@1–3#, Strasbourg
@43#, Edinburgh @29#, and Massey groups@44–47#. Berret
et al. @3# visualized shear bands in the plateau region of
stress–strain-rate curves using optical techniques, provi
,
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proof of banding; and Callaghanet al. @44–47# used NMR to
measure the velocity profile in various geometries~including
Couette, cone-and-plate, and pipe geometries!.

The transition in these cases is to a strongly aligned, p
sibly nematic, phase of wormlike micelles which has a low
viscosity than the quiescent phase. It is not known how
length distribution changes in flow, although this is certain
an important aspect of these ‘‘living’’ systems@48#. Worm-
like micellar system can possess an equilibrium nem
phase, and in some cases the shear-induced phase is
ously influenced by the proximity of an underlying nema
phase transition@1,2,49,3,50#. However, many wormlike mi-
cellar systems undergo banding at compositions much m
dilute than that forI -N coexistence, and it is probable that
these cases flow instability is due to the nonlinear rheolo
of these systems, which is in many respects similar to tha
the Doi-Edwards model of polymer melts@23#. Since there
are at lease two possible effects~a nematic phase transitio
and flow instability of the micellar constitutive relation! ap-
parently leading to flow instability, these systems are qu
rich. It is tempting to analyze the extent to which these s
tems display behavior analogous to the kinetics of equi
rium phase separation, and groups have recently begu
study the kinetics of nonequilibrium phase separat
@2,29,51#.

Pine and co-workers have recently studied a worml
surfactant system at extreme dilutions and found, surp
ingly, that for low enough concentrations~but still above the
overlap concentration! shear induces a viscoelastic phase t
they interpret as a gel@52–54#. The origins and structure o
this gel are currently unknown. In controlled stress expe
ments they observe shear banding and a ‘‘plateau’’
stresses higher than a certain stress, in which the strain
decreasesas shear induces the gel. Above the stress at wh
the gel fills the sample cell, the strain rate increases agai
complete a dramaticS curve. For controlled strain-rate ex
periments the system jumps, at a well defined strain r
between the gel and solution phases.

Another well-studied system is the onion lamellar surfa
tant phase, originally studied by Roux, Diat, and Nallet@12–
14#. These systems display a bewildering variety of tran
tions between lamellar, aligned-lamellar, onion, and on
crystal phases of various symmetries, as functions of app
shear flow, temperature, and composition. As an exam
one particular system undergoes transitions, with increas
strain rate, from disordered lamellae to onion, to onio
lamellae coexistence~in which coexistence is inferred from
plateau in the stress–strain-rate curves!, to well-ordered
lamellae @13#. Recently, Bonn and co-workers@38# found
shear-induced transitions between different gel states
lamellar onion solutions with shear bands~visualized by in-
serting tracer particles! oriented with interface normals in th
vorticity direction, indicating phase separation at comm
strain rate instead of common stress, as we clarify below
this case the averaged stress–strain-rate constitutive rel
followed a sidewaysS curve under controlled strain-rat
conditions.

Mather et al. @7# have recently studied a thermotrop
polymer liquid crystal using visual and rheological measu
ments, and inferred a shear-induced nematic phase trans
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and phase separation, the latter which they attribute to p
dispersity.

In summary, shear-banding has been seen in several
tems, and in all cases is associated with some flow-indu
change in the fluid microstructure. Most systems are s
poorly understood@52,14,38# and, given the range of com
plexity, it is certain that many qualitatively new phenome
remain to be discovered.

B. Theoretical issues

The crux of the problem from a theoretical point of vie
may be appreciated from Fig. 1. These stress–strain-
curves are somewhat reminiscent of pressure-density (p-r)
isotherms for a liquid-gas system. Curve segments w
negative slope,]sxy /]ġ,0, are unstable and cannot d
scribe a physical state of a bulk homogeneous syst
Analogously, isotherms with negative slopes]p/]r,0 have
negative bulk moduli and are unstable. The liquid-gas sys
resolves this instability by phase-separating into regions
different densities~according to the lever rule to maintain th
average density!. Similarly, the banded flows seen in th
experiments described above appear to be a nonequilib
phase separation into regions of high and low strain-r
maintaining the applied mean strain rate.

In previous work@5,6,9# we constructed a ‘‘phase dia
gram’’ by pursuing an analogy between homogeneous st
steady states and equilibrium phases. As in equilibrium, n
equilibrium ‘‘phases’’ may be separated, in field variab
space, by hypersurfaces representing continuous~e.g., criti-
cal points/lines! or discontinuous~‘‘first-order’’ ! transitions.
Coexistence implies an inhomogeneous state spanning s
rate branches of the homogeneous flow curves. Note, h
ever, that there is an ambiguity in connecting separ
branches of the homogeneous flow curves in Fig. 1. The
curve permits coexistence of states with the same stress
different strain rates, while the lower curve also allows c
existence of states with the same strain rate and diffe
stresses@28,9#.

Figure 2 shows that phase separation at a common s
occurs such that the interface between bands is parallel to
vorticity-velocity plane ~annular bands, in Couette flow!,
while phase separation at a common strain rate occurs
the interface between bands parallel to the velocity–veloc
gradient plane~stacked disks, in Couette flow!.

This highlights a striking contrast between equilibriu
and nonequilibrium systems. In equilibrium the field va
ables ~pressure, temperature, chemical potential! are

FIG. 2. Geometries for phase separation at common stress~left!
or strain-rate~right! in a Couette rheometer. For phase separatio
a common stress~left! phasesI and II have different strain rates

while at a common strain rate~right! they have different stresses.ẑ
is the vorticity axis,x̂ is the flow direction, andŷ is the flow gra-
dient axis.
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uniquely defined and determine phase coexistence.
sheared fluids, one needs an extra field variable to determ
the extended phase diagram. However,for a system with
more than one choice of coexisting geometry, the appro
ate field variable may not necessarily be identified a prio.
The complete answer of how to determine~theoretically! the
dynamic field variable is not known. Of course, the nature
the constitutive relation may help, for example the top cu
of the Fig. 1 does not allow the strain rate as the field va
able. We will come back to discuss some possible answe
this interesting problem in Sec. VII B~see also@28# for other
suggestions!.

Another important difference from equilibrium systems
evident when, say, assuming the systems choose to f
shear bands at common stress, we try to determine at w
stress a system forms shear bands. The constitutive rela
shown in Fig. 1 are calculated for homogeneous states,
there is no apparent prescription for determining the selec
banding stress, despite the experimental evidence for a
lected stress. A similar apparent degeneracy occurs in fi
order phase transitions in equilibrium statistical mechan
but is easily resolved by demanding that the system m
mize its total free energy, or, equivalently, by appealing
the convexity of the free energy of the equilibrium therm
dynamic systems@55#. This leads to equality of field vari-
ables between two phases and the common tangent cond
~e.g., the Maxwell equal areas construction for liquid-g
coexistence@56#, or the equal osmotic pressure conditio
aided by equal chemical potential, in rod suspensions@57#!.

In the shear band problem, an unambiguous resolutio
this degeneracy is to consider the fullinhomogeneous~i.e.,
nonlocal in space! equations of motion, and determine pha
coexistence by that choice of field variables~appropriately
chosen by hand! for which there exists astationary interfa-
cial solution to the steady-state differential equations of m
tion @5,34,9#. For zero stress this technique reduces, a
should, to minimization of the free energy. The importan
of inhomogeneous terms in fluid equations of motion h
been noted by several groups, who pointed out that the s
dard fluid equations can have ill-defined mathematical so
tions @58# if such terms are not included. Of course, if th
phase diagram depends sensitively on the form or magni
of the inhomogeneous terms, one needs a detailed un
standing of the underlying physics. The use of a stable in
face to select among possible coexisting states was first
tulated for nonlinear dynamical systems, as far as we kn
by Kramer @59#, and later by Pomeau@60#, and was first
applied ~independently! to complex fluids in Ref.@6#. The
inclusion of gradient terms in constitutive relations is rapid
gaining acceptance, as recent unpublished work by Gov
~phase separation of model blends of long and short p
mers! @36# and Dhont~introduction of model gradient term
to resolve stress selection! @37# indicates.

In this work we study a model for rigid-rod suspensions
shear flow. While there are certainly ongoing experiments
these systems@7#, the primary motivation for this extende
work is to explore the manner in which phase separation
coexistence occurs in complex fluids in flow. The appro
mations used in obtaining our equations are severe~includ-
ing a decoupling approximation whose defects are w
known @61#!, and we expect qualitative agreement at be

t
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However, this is the first complete study of which we a
aware of nonequilibrium phase separation of a complex fl
in flow for a concrete model, and we hope it illuminates t
phenomenology of flow-induced phase transitions.

III. METHODOLOGY

We seek the equations of motion for a solution of rodli
particles. The most useful dynamic variables describing
long-wavelength hydrodynamic degrees of freedom are
volume fractionf(r ), the fluid velocityv(r ), and the nem-
atic order parameter tensor

Qab~r !5^nanb2 1
3 dab&, ~3.1!

wheren is the rod orientations and̂ & denotes an averag
around the pointr . Previous studies of liquid crystals und
shear flow have been either for thermotropics@5,6#, where
the issues we present below associated with compos
coupling are not present, or homogeneous suspens
@8,39#, where phase coexisting was not considered.

Our work below is based on the model extending that
Doi @40,41#. Seeet al. @8# studied the Doi model in shea
flow, but did not attempt to consider phase coexisten
Bhave,et al. @39# analyzed this model in more detail, but d
not consider realistic phase-separation behavior. We a
ment this model with reasonable estimates for translatio
entropy loss upon phase separation and for the free-en
cost due to spatial inhomogeneities. Zubarev studied sh
induced phase separation in a variation of the Doi mode
flow based on the equality of nonequilibrium free energi
calculated from the flow-perturbed orientational distributi
function @26#. Zubarev only considered phase separation
common strain rate, and did not treat the rheological
sponse~stress! of the system or log-rolling states.

A. Equations of motion

The free energy~e.g., as in Ref.@57#! is given by

F~f,Q!5kBTE d3r H f

v r
ln f1

~12f!

vs
ln ~12f!

1
f

v r
@ 1

2 ~12 1
3 u!Tr Q22 1

3 u Tr Q31 1
4 u~Tr Q2!2

1 1
2 K~¹aQbl!2#1 1

2

g

vs
~¹f!2J . ~3.2!

Here, ‘‘Tr’’ denotes the trace,v r andvs are rod and solven
monomer volumes, and

u[n2cdL0
2 ~3.3!

is Doi’s excluded volume parameter@40,41#, wherec is the
concentration~number/volume! of rods of lengthL0 and di-
ameterd, andn2 is a geometrical prefactor~Ref. @40# esti-
matedn255p/16.0.98). The volume fractionf is

f5cv r , ~3.4!

in terms of which
d

e
e

n
ns

f

e.

g-
al
gy
ar-
n
,

a
-

u5fL
n2

a
, ~3.5!

where L5L0 /d is the rod aspect ratio anda is an O(1)
prefactor defined by

v r5ad2L0 . ~3.6!

For spherocylinders,a5p@121/(3L)#/8, which reduces, in
the limit L→`, to a5p/8.0.39. We useu and f inter-
changeably below as a composition variable.

In much of what follows, we make two further assum
tions to reduce the number of parameters in our model.
fix vs by assuming

v r5Lvs , ~3.7!

which corresponds to a particular volume of the solvent m
ecules relative to that of the rodlike molecules. Further,
assume that the geometric factorn2 /a has the value unity, so
that

u5fL, ~3.8!

which corresponds to a particular shape of the rigid-rod m
ecules. These two assumptions specify the detailed shape
volume ratio of the system we study below. For slightly d
ferent systems withv rÞLvs or n2 /aÞ1, our work should
still provide an accurate qualitative picture.

The first two terms of Eq.~3.2! comprise the entropy o
mixing, and the first three terms in square brackets are fr
Doi’s expansion of the free energy~derived per solute mol-
ecule! in powers of the nematic order parameterQ. These
terms were derived from the Smoluchowski equation for
distribution function of rod orientations@40,41#. We keep the
expansion to fourth order to describe a first-order transit
and give the correct qualitative trends.

Assuming Eqs.~3.7! and~3.8!, we calculate the following
biphasic coexistence regions:

$uI52.6925,uN52.7080% ~L55.0!, ~3.9!

$uI52.6930,uN52.7074% ~L54.7!, ~3.10!

whereuI anduN are the excluded volume parameters~com-
positions! for the coexisting isotropic and nematic phase
respectively. Note the very weak dependence of the biph
regime~in the scaled variableu5Lf) on L.

The last two terms in Eq.~3.2! penalize spatial inhomo
geneities. By adding the single term proportional toK we
have assumed a particular relation for the Frank consta
(K15K25K,K350) @62,63#. Although Odijk has calculated
these constants for model liquid crystals~in the nematic re-
gime! @64#, we will see below that this choice is probab
unimportant for this model. More generally, we expect t
Frank constants to vary as functions ofQ(r ) in physical
systems, a situation which we have not addressed here.
final term penalizes composition gradients@65#. We are not
aware of any calculations ofg for solutions of rodlike par-
ticles. In Eq.~3.2!, we assume an athermal solution with n
explicit interaction energy.

The nematic order parameter obeys the following eq
tion of motion @40,41#:
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~] t1v•“ !Q5F~k,Q!1G~f,Q!, ~3.11!

where kab5¹bva . In Eq. ~3.11! the ~reactive! ordering
term F is given by

F~k,Q!5 2
3 ks1k•Q1Q•kT22~Q1 1

3 I !Tr~Q•k!,
~3.12!

where ks is the symmetric part ofk and I is the identity
tensor. For simplicity, we have chosen the form appropr
for an infinite aspect ratio@the prefactors differ byO(1)
constants for finite aspect ratios@41##. The couplingF to the
flow both induces order and dictates a preferred orientat
The dissipative portionG is

G~f,Q!56
D̄r

kBT

v r

f
H, ~3.13!

where

D̄r5
n1Dr0

~12 3
2 Tr Q2!2~cL0

3!2
~3.14!

is the collective rotational diffusion coefficient and

H52FdF
dQ

2 1
3 I Tr

dF
dQG ~3.15!

is the molecular field.Dr0 is the single-rod rotational diffu-
sion coefficient andn1 is an O(1) geometrical prefactor
which will be fixed below Eq.~3.30!. The rotational diffu-
sion coefficient is

Dr05
kBT ln L

3phL0
3

, ~3.16!

whereh is the solvent viscosity. TheQ dependence in the
denominator of Eq.~3.14! enhances reorientation for wel
ordered systems@40#. Our choice forD̄r is crude, since it
applies to rods in concentrated solution and we use it in
concentrated and semidilute regimes. As with many of
approximations, this gives us a tractable model system w
which to study the phenomenology of phase separation.

Doi and co-workers derived Eq.~3.11! for homogeneous
systems. We extend this to inhomogeneous systems by
cluding the gradient terms implicit in the functional deriv
tive which definesH. Our choice ofF is the so-called qua
dratic closure approximation to the Smoluchowski equat
@41#. This approximation ensures that the magnitude of
order parameter remains in the physical range in the limi
strong ordering, but is known to incorrectly predict pheno
ena such as director tumbling and wagging. Many work
have investigated the subtleties of various closure appr
mations and the degree to which they reproduce real
flow behavior@61#. Since our primary goal is to explore th
method for calculating phase behavior and outline some
the possibilities for coexistence under flow, we confine o
selves to this well-studied model.

The fluid velocity obeys@40,41,66#
e

n.

e
r

th

in-

n
e
f
-
s
i-
ic

of
-

r~] t1v•“ !v5“•@2hks1s~f,k,Q!#1
dF
df

“f2“p,

~3.17!

whereh is the solvent viscosity,r the fluid mass density
and the pressurep enforces incompressibility,“•v50. For
the low Reynold’s number situations considered here,
for steady shear flow, we will equate the left-hand side of
equation above to zero.

The constitutive relation for the stess tensors(f,k,Q)
was derived by Doi and co-workers, and includes dissipa
and elastic parts. Since the elastic stress dominates@20#, we
keep only this part:

s.selastic523H1H•Q2Q•H2“Qab•
dF

d“Qab
.

~3.18!

The first term of Eq.~3.18! was given by Doi@40#, while the
last three terms were derived later@5# and are equivalent to
the elastic stress due to Frank elasticity@63#, generalized to a
description in terms of the nematic order parameterQ rather
than the nematic director. Note that the last three terms v
ish for a homogeneous system.

Finally, the composition equation of motion is of th
Cahn-Hilliard form@65#,

~] t1v•“ !f52“•J5“•M•“m, ~3.19!

whereM is the mobility tensor and the chemical potential
given by

m5
dF
df

. ~3.20!

The diffusive current isJ52M•“m. The complete dynam-
ics is thus described by Eqs.~3.11!, ~3.17!, and~3.19!.

The dynamical equations of motion for other complex fl
ids have the same theoretical structure: equations of mo
for the conserved quantities and the broken-symmetry
flow-induced structural order parameter~analogous toQ),
and a constitutive relation for the stress as a function
composition and order parameter@66#. For a given system
and set of equations of motion, the analysis below is gene
For some local models, internal dynamics@Eq. ~3.11!# can be
eliminated to give the stress as a history integral over
strain rate. In polymer melts@20# and in wormlike micelles
@23# far from a nematic regime, this leads to nonmonoto
stress–strain-rate curves. However, augmenting these
gral theories with nonlocal terms to calculate interface p
files is nontrivial.

B. Steady-state conditions

In this work we study planar shear flow, specified by

]vx~r !

]y
5ġ~r !. ~3.21!
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For homogeneous flowsv(r )5ġyx̂. The phase diagram i
given by the domains of stable steady-state solutions to
equations of motion for applied shear stress or strain rate
the phase space spanned by

~f,sxy! ~common stress!, ~3.22!

~f,ġ ! ~common strain rate!. ~3.23!

For phase separation at common stress, the stress is un
and the strain rate partitions between the two phases; w
for phase separation at common strain rate, the strain ra
uniform and the shear stress partitions between the
phases.

The strain rate tensor is given by

k5ġS 0 1 0

0 0 0

0 0 0
D . ~3.24!

Upon rescaling,

g6 5
ġL2

6Dr0n1n2
2

, ~3.25!

ŝ5
sn2L3

3kBT
, ~3.26!

the steady-state condition for the order parameter@Eq.
~3.11!# is

05
1

u2L2~12 3
2 Tr Q2!2

Ĥ1g6 F̂, ~3.27!

whereF5ġF̂ and

2Ĥ5S 12
u

3DQ2uS Q22
I

3
Tr Q2D1uQTr Q22K¹2Q.

~3.28!

In steady-state planar shear flow, the velocity gradie
are normal to the flow direction, so the convective derivat
vanishes and Eq.~3.27! specifies the order parameter in
homogeneous flow. Under these conditions, integration
the momentum equation~3.17! gives a constant stress,

s05s2p I12hks, ~3.29!

wheres0 is the boundary stress. The rescaled shear stre

ŝxy
0 5Ag6 2uL@Ĥ1K~¹2Q•Q2Q•¹2Q!#xy , ~3.30!

whereA52n1n2
3(ln L)/(3p) is a constant of order unity: we

takeA51 for the remainder of this work, which correspon
to a particular choice forn1. As with the assumptions o
molecular geometry embodied inn2 and a @Eqs. ~3.7! and
~3.8!#, different values forA should not qualitatively chang
the nature of our results.

Integrating the steady-state composition equation~3.19!
and using the boundary condition that material cannot e
or leave the system, we find
e
in

rm
ile
is
o

ts
e

f

is

er

m05m~r !, ~3.31!

m~r !

kBT
5FDoi1

]

]f
@f ln f1L~12f!ln~12f!#

1fL
]

]u
FDoi1

1
2 K~¹Q!22gL¹2f, ~3.32!

where Eqs.~3.7! and ~3.8! have been used to specify th
molecular geometry,m0 is a constant of integration, and

FDoi5
1
2 ~12 1

3 u!Tr Q22 1
3 u Tr Q31 1

4 u~Tr Q2!2.
~3.33!

Note that the mobility tensorM plays no role in the steady
state conditions, or in the resulting phase diagram.

Eqs.~3.27!, ~3.30!, and~3.31! completely specify the sys
tem in planar shear. Solving these equations will occupy
remainder of this work. Note that variablesg6 ,ŝ,m/kBT are
all dimensionless quantities.

IV. CALCULATION OF PHASE DIAGRAMS

A. Interface calculation

The phase diagram is specified by solving Eqs.~3.27!,
~3.30!, and ~3.31! for given m0 and boundary stresssxy

0 .
Nonequilibrium ‘‘phases’’ are defined as the stable stea
state space-uniform solutions to these equations. Theseinho-
mogeneousequations comprise a set of ordinary different
equations, through the gradients that appear in the stress
in the functional derivatives that definem and H. The only
parameters of the theory are the rod aspect ratioL and the
ratio of elastic constants,

l5
gL

K
~4.1!

(K may be absorbed into the length scale of the system!.
We first fix f (i.e., u) and solve the homogeneous alg

braic versions of Eqs.~3.27! and ~3.30! for Q and ġ as a
function ofsxy

0 . In the few cases where the phase diagram
the sxy-m plane has a transition line parallel to them axis,
one must first fixm0, and then determines0. This is done for
all f. BecauseF(f,Q) describes anI -N transition, at a
given stress, multiple roots exist with distinct strain rates a
Q. Figure 3 shows the stress strain-rate relations for hom
geneous solutions to Eqs.~3.27! and ~3.30! for L55.0 and
l51.0.

The isotropic branch has a larger viscosity than the ne
atic branch, and has an increasing effective viscosity for
creasing concentration, reflecting the contributionuĤ in Eq.
~3.30!. Conversely, the nematic branch has a lower stres
higher concentrations due to the increased nematic or
which permits less-hindered motion.

For a dilute isotropic system~curve a!, shear flow con-
tinuously induces nematic order. A more aligned system
a lower effective viscosity, so the stresss(ġ) increases
slower than linearly~shear thins! as the magnitude of the
order parameterQ increases. Eventually the system attain
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smoothly, a high strain-rate state with a much lower visc
ity than in the limit of zero stress. For more concentra
systems~curvesb, c, andd!, shear flow induces a transitio
to a nematic phase with lower viscosity, ands(ġ) is non-
monotonic. There is a region of stresses for which two sta
strain rates exist, on either the nematic or isotropic branc
of the constitutive curve. For compositions inside the bip
sic regime~curve e!, both nematic and isotropic branche
exist in the limit of zero stress, with the isotropic bran
losing stability at high enough stress. Finally~not shown! for
highly concentrated systems only nematic branches exis

As mentioned in Sec. II B, we calculate the phase diagr
by explicitly constructing the coexisting interfacial solutio
@6#. In common stress coexistence, for example, the coex
ing states havedifferentstrain rates and, generally, differe
compositions. Hence, they connect the high and low str
rate branches of two different curves in Fig. 3. It is easies
visualize this by considering the intersection of a plane a
given stresssxy

0 with the surfacesxy(ġ,u), as in Fig. 4.
At a given stress, the strain rate varies with composit

as shown in Fig. 5~a!. At coexistence, the chemical potenti
m(r ) must be constant through the interface, as dictated
Eq. ~3.31!. The functional form of the nonequilibrium chem
cal potential is known from Eq.~3.32!, and depends on th
strain rate through the dependence of the nematic order
rameter on the strain rate in steady state. We plotm(u) in

FIG. 4. Stress-strain-composition surface for the curves in F

3. The plane is atŝxy
0 50.05.

FIG. 3. Homogeneous stressŝxy vs strain rateg6 behavior for
various excluded volumes,L55.0 andl51.0. Dotted lines mark
unstable branches. Similarly, curves along which]m/]f,0 are
linearly unstable.
-
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Fig. 5~b!. There is a continuum range ofm, which allows
possible coexisting pairs of states.~Recall thatu is propor-
tional to the rod volume fractionf.!

We now impose the interface solvability condition as fo
lows. For a given stresssxy

0 , we determine a specific coex
istence chemical potentialm0, which allows a stable interfa
cial solution to Eqs.~3.27!, ~3.30!, and~3.31!. In practice, we

eliminate ġ(r ) from Eq. ~3.27! using Eq.~3.30!, and solve
Eqs.~3.27! and~3.31! for the interfacial profile, with bound-
ary conditions~fixed Q andu) chosen by two points on the
low and high strain-rate branches of Fig. 5~b! with the same
m0. We adjustm0 until a stationary interfacial profile is
found. This solvability criterion gives sharp selection onm,
and in this way determines a tie line on theġ-u plane, Fig.
5~a!. By varying the stress, we compute the entire ph
diagram in thesxy-u and ġ-u planes.

For phase separation at a common strain rate, the c
struction is analogous. One slices a vertical plane thro
Fig. 4 at a given strain rate, constructs the curvem(u) along
the intersection with the surface, and searches for a stat
ary interfacial solution.

The interface calculations are carried out by discretiz
the system on a one-dimensional mesh and, from smo
initial conditions, evolving Eqs.~3.27!, ~3.30!, and ~3.31!
forward using fictitious dynamics calculated with an implic
Crank-Nicholson scheme. Spatial variations are only allow
in the direction in which phase separation occurs, so we
place
.

FIG. 5. ~a! Reduced strain rateg6 (u) and~b! chemical potential

m(u) for the stress contour in Fig. 4 (ŝxy50.05). The tie line is
calculated using the interface construction.
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¹→H ]

]y
common stress

]

]z
common strain rate,

~4.2!

wherez is in the vorticity direction. We fix the values ofu
andQ at either side of the interface to lie on the high and lo
strain-rate branches of Fig. 5, begin with smooth initial co
ditions, and let the system ‘‘evolve’’ towards steady sta
An interface develops between the two phases, and move
one boundary or the other. For a given stress, coexisten
determined by that chemical potentialm for which a station-
ary interface lies in the interior of the system~in the limit of
large system size! @6#. An analogous construction may b
made by maintaining a fixed mean strain rate on the unst
part of a homogeneous curve, and then starting up the sy
and allowing it to select a stress and chemical potential
either case the selected stress is that stress for which a
tionary interfacial solution between the high and low stra
rate branchesexists. Such an interfacial solution is known i
dynamical systems theory as a heteroclinic orbit@59,60,9#,
and further work will investigate this in more detail for sim
pler model systems@35,32,67#.

We restrict the nematic order parameter to

Q5S q1 q3 0

q3 q2 0

0 0 2~q11q2!
D , ~4.3!

since all steady-state solutions with nonzero elementsQxz or
Qyz are unstable due to the symmetry of shear flow@39#. In
a similar calculation for thermotropic nematics in shear flo
we have found that this restriction onQ reproduces the sam
selected stress as that obtained when keeping the full te
@6#.

For planar shear flow and a wide class of equations
motion, we have shown that if a coexisting solution exists
occurs at discrete points in the parameter set@35#. For ex-
ample, for a given stresssxy

0 , coexistence can occur only a
discrete values form0, that is, along lines in the field variabl
space spanned bysxy-m. This is analogous to equilibrium
systems where, for example, phase transitions in a sim
fluid occur along lines, rather than within regions, in t
pressure-temperature plane.

Note that a one-dimensional calculation does not de
mine the stability of the interfacial solution with respect
transverse undulations~capillary waves!, which could be im-
portant in, particularly, the common stress geometry@68#.

B. Homogeneous solutions

The modified Doi model in the quadratic closure appro
mation has three stable solutions in homogeneous pl
shear flow. We refer the reader to Bhaveet al. for further
details@39#.

~i! I Paranematic. The paranematic stateI induced from a
disordered equilibrium phase. The order parameterQ is
small and fairly biaxial, with major axis lying in the shea
plane at an angle of almostp/4 relative to the flow direction.
-
.
to
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~ii ! N Flow-aligning nematic. The flow-aligning nematic
state is much more strongly aligned, has slight biaxiality
duced by the flow, and has the major axis of alignment in
flow plane at an angle of a few degrees relative to the fl
direction. TheI andN states have the same symmetry.

~iii ! L Log-rolling nematic. The log-rolling phase is also a
well-aligned and almost uniaxial phase, but with major a
of alignment in the vorticity (ẑ) direction, so the rods spin
about their major axes.

The I phase is stable at lower volume fractions a
merges with theN phase at high strain rates. TheL phase is
stable only at higher volume fractions, and is destabilized
high enough strain rates. For low strain rates the stress o
L state is lower than that of theN state, which is lower than
that of theI state~see Fig. 6!.

Figure 7 shows the regions of stability of the vario
states. The loop in Fig. 7~a! occurs for compositions suc
that the constitutive curves(ġ) has the shape of curveb in
Fig. 3. Similar phase-plane plots were calculated by Bh
et al. @39# and Seeet al. @8#. They did not consider the mix
ing entropy needed to generate a realistic nematic transit
however, and always generated solutions for a given st
rate instead of a given stress~this explains the absence of
loop in their phase-plane plotġ-f). Their plots ~compare
Fig. 5 of Ref.@39#! correspond to truncating the loop in Fig
7~a!. Figure 7~b! has a similar, barely discernable, loop ne
the critical point, within which there are no stable stat
This instability is due to the instability of the compositio
equation, Eq.~3.19!. In this region

]m

]f U
sxy

,0, ~4.4!

which is equivalent to a negative diffusion coefficient, and
analogous to the conventional definition of the spinodal l
for ordinary equilibrium demixing.

V. COMMON STRESS COEXISTENCE

For common stress coexistence the interface lies in
velocity-vorticity plane, and inhomogeneities are in theŷ

FIG. 6. Constitutive relations forI, N, andL states, forL55.0
and two values for the excluded volume parameter.
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direction ~see Fig. 2!. The stress balance condition at th
interface iss• ŷ uniform.syy is taken care of by the pressu
andszy vanishes by symmetry~no flow in the ẑ direction!,
leaving continuity of the shear stresssxy through the inter-
face. The two coexisting phasesI andII have strain rates an
compositions partitioned according to

f̄5zf I1~12z!f II , ~5.1!

ḡ̇5zġ I1~12z!ġ II , ~5.2!

wheref̄ and ḡ̇ are the mean composition and strain rate a
z is the fraction of material in phaseI.

A. Paranematic–flow aligning coexistence„I-N…

Phase diagram. Figure 8 shows the tie lines computed o
the (ŝxy-u) and (g6 -u) planes according to the procedu
outlined in Sec. III. Several features should be noted. F
induces nematic behavior in what, in equilibrium, would
an isotropic phase. The tie lines are horizontal in the (ŝxy-u)
plane, since phases coexist at a prescribed stress, and h
positive slope in the (g6 -u) plane because the more conce
trated nematic phase flows faster. There is a critical poin
sufficiently strong stress, whose existence is expected s

FIG. 7. Regions of stability of paranematic~I!, nematic~N!, and
log-rolling ~L! states in the strain-rate–composition~a! and stress-
composition~b! planes forL55.0. Note that the loop in~a! contains
no stable states. Stability limits are calculated with respect to b
order parameter and composition fluctuations, for a given contro
stress. The thin loop in~b! encloses a region with no stable state
due to the instability of the composition equation.
d

w

ve a
-
at
ce

the flow-aligning nematic and paranematic states have
same symmetry (Q is biaxial! and their major axes are in th
shear plane.

More interesting is the changing slope of the tie lines. F
weak stresses the equilibrium system is slightly perturb
and the tie lines are almost horizontal. For high stresses
tie lines become more vertical and the composition diff
ence between the phases decreases. The slope of the tie
determines the shape of the mean stress–strain-rate rel

s̄xy( ḡ̇) that would be measured in steady-state experime
Mean constitutive relations. Consider a composition in

the range where phase separation occurs. For small ap

stresss̄xy( ḡ̇) varies smoothly until the two-phase region
reached. At this stress, a tiny band of high strain-r
strongly aligned nematic material appears, with volume fr
tion determined by the lever rule, Eq.~5.1!. The mean strain

rate ḡ̇ is determined by the lever rule, Eq.~5.2!, and the

measured constitutive relations̄xy( ḡ̇) is nonanalytic at this
point ~see Fig. 9!. As the stress is increased further, the s
tem traverses the two-phase region by jumping from tie l
to tie line. Each successive tie line has a higher stres
higher mean strain rate, and a steadily increasing volu
fraction of nematic phase. The compositions of both coex
ing phases change steadily through the two-phase regio

h
d

,

FIG. 8. Phase diagram in the (ŝxy-u) ~a! and (g6 -u) ~b! planes
for L55.0, l51.0, along with the limits of stability ofI and N
phases.
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FIG. 9. Mean stress–strain-rate curves for coexistence at common stress, forL55.0 andl51.0. The solid lines denoteI andN branches;
the dotted line in each figure denotes the stableN branch with which theI state coexists at the low strain-rate boundary of the coexiste
region, at a strain rate marked by an open circles. The solid circlesd and thick solid line denote the stress that would be measured in
banded regime. Phase coexistence occurs between phases ofdifferentcompositions than the mean compositions (u52.555, 2.58, 2.685).
The unstable portion of the homogeneous flow curve is shown in~a! and~b!, but not~c!. Note that the plateaus in the two-phase regions
~a! and ~b! rather obviously donot satisfy an equal area construction with the underlying constitutive curve at the mean compositio
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The constitutive relations̄xy( ḡ̇) through the two phase
region is determined by the spacing and splay of the tie lin
For mean compositionsf̄ close to the equilibrium isotropic
nematic transition@Fig. 9~c!#, the tie lines in the (g6 -u) plane
are fairly flat, so that the stresssxy changes significantly
through the two-phase region, and the ‘‘plateau’’ has defin
curvature, reflecting the initial splay of the tie lines. F
slightly lower mean compositions@Fig. 9~b!# the ‘‘plateau’’
is straighter and flatter, as can be seen in~Fig. 10!, because
the lines are more vertical in the (g6 -u) plane. Finally, for
compositions near the critical point the plateau is flatter s
but, more interestingly, phase coexistence occurs in a re
where the stress-strain curve at the mean composition i
longer nonmonotonic@Fig. 9~a!#. This is because stability in
a two-phase system is also determined by the stability w
respect to composition variations. In fact, the local chem
potentialm(u) has negative slope and is unstable on a s
ment of this curve. The tie line construction is a graphi
expression of the explanation proposed by Schmittet al.
@28#, who attributed a sloped plateau to composition dep
dence of the stress-strain constitutive relation. The gen
relation is given by

]s

]ḡ̇
5F z

h I
1

12z

hN
2m~s!H 12z

ġN8 hN

1
z

ġ I8h I
J G21

, ~5.3!

FIG. 10. ŝxy vs ĝ̇ for common stress coexistence forL55.0 and
l51.0. The solid lines connecting the high and low strain r
branches at each composition denote the composite flow behav
coexistence.
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wherem(s) is the slope of a tie line with stress values, the
lines $s I(f),sN(f),ġ I(f),ġN(f)% bound the phase
coexistence domains in thes-f and ġ-f planes, hk

5]sk /]ġ is the local viscosity of thekth branch, andġk8
5]ġk /]f.

Measurements at controlled stress or controlled stra
rate. Although these calculations are for phase separatio
a common stress, one may perform experiments at ei
controlled stress or strain rate. All three composite curve
Fig. 9 have similar shapes, so we expect the same qualita
behavior for all compositions. Controlled strain-rate expe
ments should follow the homogeneous flow curves, exc
for strain rates in the coexistence regime. Here we expect
steady state to eventually be the banded state. This sh
presumably occur by a nucleation event after some time,
start-up strain rates less than theI limit shown in Fig. 8~a!,
and should occur immediately for imposed strain rates
yond this stability limit. Conversely, upon decreasing t
strain rate from the nematic phase, we expect nucleated
havior for strain rates larger than theN limit, and instability
for smaller strain rates. In the metastable regime we exp
the flow curve to follow the underlying homogeneous co
stitutive curve for the given composition, until the nucleati
event occurs. Interestingly, there is a small region@inside the
loop in Fig. 8~a!# where the system is unstable when broug
at controlled strain rate, into this region from either theI or N
states. This corresponds to constitutive curves with the m
tivalued behavior of curveb in Fig. 3.

Controlled stress experiments should exhibit similar b
havior. Consider Fig. 9~b!. For initial applied stresses large
than the minimum coexistence stress and less than theI limit
of stability in Fig. 8~b!, we expect the system to follow th
homogeneous flow curve until a nucleation event occurs.
ter nucleation, the strain rate should increase, until either
proper plateau strain-rate or the high strain-rate nematic s
is reached, depending on the magnitude of the stress.
stresses larger than the limit of stability, we expect the s
tem to become immediately unstable to either a banded fl
or a homogeneous nematic phase, depending on the ma
tude of the stress.

Metastability: Experiments. Experiments on wormlike mi-
celles @1,2,29# have found constitutive curves analogous

e
at
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those in, say, Fig. 9. In these experiments the plateau app
to be the stable states, while the portion of the constitu
curve~a ‘‘spine’’! which extends to stresses above the on
of the stress plateau appears to be a metastable branc
which the system may remain for a finite period of tim
under controlled stress or strain-rate conditions. Referen
@2,29,51# conducted controlled strain-rate experiments a
found that the system follows the composite curves~without
‘‘spines’’ that extend above the onset of the stress plateau! in
Fig. 9, if care is taken to reach steady state. In these sys
the plateaus were nearly flat, suggesting a very slight dep
dence of the flow behavior on composition. For controll
strain-rate quenches into what corresponds to the two-p
region of Fig. 8~a!, the system took some time to develo
shear bands and phase separate. This relaxation or ‘‘nu
ation’’ time decreased as the mean strain rate was incre
@29#. It is not clear that they reached a limit of stabili
~which would be analogous to theI limit in Fig. 8!. The
relaxation times were of order 60– 600 s, depending on t
perature, mean composition, and mean strain rate. We
phasize that these experiments were on micellar soluti
which probably do not show an isotropic-nematic transitio
but still display the same qualitative stress–strain-rate r
tionship as curveb in Fig. 3.

Reference@44# revealed different stress plateaus up
controlling either the strain rate or the shear stress~see Fig. 7
of Ref. @44#! in cone-and-plate flow. In controlled stress e
periments, the stress plateau occurred at a stress of orde
times the stress plateau observed under controlled strain
conditions. Moreover, the flow curve under controlled str
conditions exhibited a stress maximum and then a decr
in stress to an approximate flat plateau. One explanation
the high stress plateau under controlled stress condit
could be that the ‘‘spine’’ never nucleated under control
stress conditions, and the system smoothly transforme
the high strain-rate phase. However, we do not have an
planation for the decrease and subsequent plateau in s
under applied strain-rate conditions.

In other experiments, controlled stress experiments
vealed two kinds of metastable behavior@29#. For sp,s
,s jump, wheresp is the minimum stress for the onset
banding in controlled strain-rate experiments, the sys
maintained a strain rate on the ‘‘metastable’’ branch for
definite times~measured times were up to 104 s). For s
.s jump the system accelerated, after of order 103 s, and left
the rheometer. For these systems it is not clear wheth
stable high shear branch exists. An explanation fors jump is
lacking. Evidently the nucleation processes governing m
stability at controlled stress and controlled strain rate
different. Clearly we need more experiments and the
about the nature of nucleation and metastability in contro
stress versus controlled strain-rate experiments.

Polydispersity. Figure 11 shows the effect of rod aspe
ratio L on the phase diagram. A smaller rod aspect ra
couples more weakly to the flow, requiring a slightly larg
strain rate to induce a transition to the nematic phase@Fig.
11~a!#. The resulting stress is slightly smaller because, w
the system enters the two-phase region the stress is la
determined by that of the paranematic branch, which
creases with increasingL @Fig. 11~b!#. Although the equilib-
rium phase boundaries are close@see Eqs.~3.9! and ~3.10!#,
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the deviation is amplified considerably by applying flow
This suggests that flow enhances the natural tendenc
length polydispersity to widen biphasic regimes.

B. Paranematic–log-rolling coexistence„I-L…

Figure 12 shows the phase diagram calculated for co
istence between paranematic~I! and log-rolling~L! states. As
with I-N coexistence, the zero shear limit corresponds to
equilibrium biphasic region. However, for nonzero stress
biphasic region shifts in the direction of higher concent
tion. This is reasonable, since the stability limit of theL
phase shifts to higher concentrations with increasing st
~Fig. 7!. Note also that, since theI andL phases have majo
axes of alignment in orthogonal directions, there is no cr
cal point. Instead, the window of phase coexistence e
when theI phase becomes unstable to theN phase.

We have also computed phase coexistence betweenN and
L phases. This occurs at much higher compositions (u.u*
*3.0) and has a narrow width in composition due to the v
slight difference in viscosities of the two phases. Unfor
nately, we cannot resolve this coexistence regime accura
within the numerical precision of our calculations and do n
present these results here.

The existence of two possible phase diagrams for co
mon stress phase separation raises an interesting que
Can one observeI-L coexistence? Notice thatI-L coexistence
can only occur for samples prepared at concentrations a
above that necessary for equilibrium phase separation.
could prepare a phase-separated isotropic-nematic mix

FIG. 11. Phase diagrams forL55.0 andL54.7 at common
stress, forl51.0.
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and, by wall preparation, field alignment, sedimentation,
other techniques, separate the phases into two macrosc
domains with the nematic phase in the log-rolling geome

Upon applying shear, the system could then maintain
existence and move through theI-L two-phase region. How-
ever, under controlled strain-rate conditions, theI material
could decay intoI-N coexistence~see Fig. 13!. The resulting

FIG. 12. Phase diagram in the (ŝxy-u) and (g6 -u) planes for
paranematic–log-rolling coexistence, forL55.0 andl51.0. The
dotted lines are the limits of stability of theI andL phases~see Fig.
7!.

FIG. 13. Composite phase diagrams forI-L andI-N coexistence
at common stress forL55.0 andl51.0. We stress that this repre
sentstwo overlayed phase diagrams, and not a single phase
gram. For example, there isno triple point implied by the intersec
tion of the I-N and I-L phase diagrams.
r
pic
.
-

I-N coexistence would quickly destabilize the entireI-L
structure. Therefore, the three-band structureN-I-L will not
be present in this model, and it is probable thatI-L coexist-
ence could only exist under flow as a metastable state. S
lar conclusions may be drawn by examining the phase
grams in field-variable space,m-sxy , as in Fig. 18~a!. In this
case the chemical potential of theI phase, atI-L coexistence,
is within theN region of the phase diagram forI-N coexist-
ence, indicating a~possibly metastable! instability with re-
spect toI-N phase separation. Moreover, the chemical pot
tials of the three phases are never the same, except at
where theL and N states are identical apart from the ro
orientations.

VI. COMMON STRAIN-RATE COEXISTENCE

For coexistence at common strain rate the interface lie
the velocity–velocity-gradient plane, and inhomogeneit
are in theẑ direction ~see Fig. 2!. The stress balance cond
tion at the interface iss• ẑ uniform. As before,szz is taken
care of by the pressure whilesyz andsxz are zero by sym-
metry ~and because there are no stableq3 components in the
order parameter tensor!. With bands in theẑ direction, the
strain rate in each band is set by the relative velocity of
two plates~or cylinders, in a Couette device!, and the shear
stresses differ. The mean applied stresss̄xy is the area aver-

FIG. 14. Common strain-rate phase diagram in the (g6 -u) ~a!

and (ŝxy-u) ~b! planes, forL55.0 andl51.0. Also shown are the
limits of stability of the I and N phases~calculated for a given
imposed strain rate, in contrast to Figs. 7, 8, 12, and 13, in wh
the stability was calculated for an imposed stress!.

a-
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FIG. 15. Mean stress–strain-rate curves for common strain-rate coexistence forL55.0 andl51.0. The solid lines denote the stableI and
N branches; the dotted line in each figure denotes the stableN branch with which theI state coexists at the low strain-rate boundary of
coexistence region, at a strain rate marked by an open circles. The solid circlesd and thick solid line denote the stress that would
measured in the banded regime. The filled circlesd and thick solid line denotes the stress measured under banded conditions.
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age of the stress applied to each band. The coexisting ph
have shear stresses and compositions partitioned acco
to

f̄5zf I1~12z!f II , ~6.1!

s̄xy5zsxy
I 1~12z!sxy

II , ~6.2!

wheres̄xy is the mean shear stress. The interfacial equati
to solve are Eqs.~3.27!, ~3.30!, and~3.31!.

Phase Diagram. Common strain-rateI-N phase coexist-
ence is shown in Fig. 14. In this case the tie lines are h
zontal in the (g6 -u) plane. They have a negative slope in t
(ŝxy-u) plane because the paranematicI phase coexists with
a denser and less viscous flow-aligningN phase. As with
phase separation at common stress, there is a~very small!
loop in the limits of stability in the control variable plan
(ġ-u) within which there are no stable homogeneous sta
The careful reader will note that the limits of stability at
given stress~Fig. 8! are different from the limits of stability
at a given strain rate. This is physically correct, and will
discussed below in Sec. VII C.

There is an interesting crossover visible in the (ŝxy-u)
plane. For higher mean compositions the fluid has a hig
stress in its high strain-rate one-phase region than in its
strain-rate one-phase region; that is, respectively above
below the biphasic region in the Fig. 14~a!. Conversely, for
low enough compositionsu&2.67, the stress in the hig
strain-rate region immediately outside the biphasic regim
actually lessthan the stress just before the system enters
biphasic region, as can be seen by the crossing of the s
and dashed phase boundaries in Fig. 14.

This crossover is straightforward to understand. Sin
phase separation occurs at a given strain rate, and the s
of the N branch at a given composition and strain rate
always less than that of the correspondingI branch, we ex-
pect a decrease in the stress upon leaving the biphasic re
in cases where the coupling to composition is less import
We saw in the analysis at common stress that compos
effects are less important~for I-N coexistence! at lower com-
positions and high strain rates, where the tie lines are m
vertical. We expect this near the critical point where the t
phases become more and more similar. More generally,
ses
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expect this behavior in situations where phase separation
curs at a common strain rate into a shear-thinning state w
only slight changes in composition. In the more concentra
regime, the coexistence plateau traverses a wider rang
concentrations and strain rates, and emerges into the puN
phase with a higher stress~the width in strain rate of the
phase-coexistence regime is enough to overcome the s
thinning effect of the nematic phase!.

Mean constitutive relations.Figures 15 and 16 show th
mean stress–strain-rate relations. As with common st
phase separation, the shape of the ‘‘plateau’’ as the st
rate is swept through the two-phase region is not always
and depends on the splay of the tie lines. At higher conc
trations the plateau has a positive slope while, in accord w
the crossover in the (ŝxy-u) phase diagram, for lower con
centrations the plateau crosses over to negative slope, w
usually signifies a bulk instability. A simple argumen
analogous to that for the stability of a bulk fluid, suppo
this. However, we note that a composite negative slope cu
was accessed, and apparently found stable, by Huet al. @69#
under controlled stress conditions. The negative slope in
15~a! is likely to be inaccessible under controlled stress c
ditions, and the instability argument may apply to controll
strain-rate conditions. The general relation for the slope
the composite region is@28#

FIG. 16. ŝxy vs ĝ̇ for various compositions, for phase separati
at common strain rate andL55.
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]s̄

]ġ
5h I z1hN ~12z!2m~ ġ !H hN~12z!

sN8
1

h I z

s I8
J ,

~6.3!

wherem(ġ) is the slope of the tie line with strain rateġ and
sk85]sk /]f. In the limit of no concentration differenc

@df50 or m(ġ)5`#, s(ġ) is vertical through the two-
phase region.

Measurements at controlled stress or controlled stra
rate. For controlled strain-rate measurements we expect
havior similar to that for phase separation at common str
For start-up experiments with mean strain rates larger t
the minimum strain rate for coexistence at a given comp
tion, we expect the stress to follow the metastable bra
until a nucleation event causes the stress to decrease t
plateau stress. The exception is a composition such as th
Fig. 15~a!, for which the composite flow curve forI-N coex-
istence may be mechanically unstable. Similar results sho
apply upon decreasing the strain rate from the shear-indu
N phase to below theN limit. As before, this expectation o
a nucleation event is based on a possibly misguided ana
with equilibrium systems which, nonetheless, is encourag
given the experiments which see ‘‘nucleation’’-type beha
ior in micelles under flow@2,29,51#.

For controlled stress, the situation is slightly different. F
compositions with mean stress–strain-rate curves of
shape of Fig. 15~c!, we expect similar behavior to that foun
for common stress phase separation. However, for comp
tions that yield curves such as Fig. 15~a!, there is a window
of stresses for which there arethree possible states: homo
geneous low strain-rate and high strain-rate branches, a
banded intermediate branch. We emphasize that we have
determined the absolute stability of any of these branche
possibility is that the system has hysteretic behavior.
example, in start-up experiments the system would rem
on theI branch until a certain stress, at which point it wou
nucleate after some time and transform to either the h
strain-rateN branch or coexistence. We cannot tell whi
state it might go to, from this analysis, but it seems like
that it would jump straight to theN branch. If the system
jumped from theI branch to the coexistence branch, incre
ing the stress further woulddecreasethe strain rate and re
turn the system to theI branch. Since it originally nucleate
from the I branch, it seems unlikely that the original jum
could be to the coexisting plateau. The same behavior~in
reverse! would be expected upon reducing the stress from
high strain-rateN phase.

Although there have been anecdotal reports of shear b
ing in the common strain-rate geometry, there have b
very few such results published@13#. Bonn et al. @38# have
recently reported results for sheared surfactant onion g
along with visual confirmation of bands in the comm
strain-rate geometry. In controlled strain-rate experime
they found constitutive curves analogous to Figs. 15~a! or
15~b!. In controlled stress experiments they found hystere
behavior, with the system flipping between high and lo
strain-rate branches after some delay time, missing the c
istence ‘‘plateau’’ regime. However, it is not clear that the
were true steady-state results.

Stable ‘‘negative-slope’’ behavior was seen in a she
e-
s.
n
i-
h
the
t in

ld
ed

gy
g
-

r
e

si-

a
not
A
r
in

h

-

e

d-
n

ls,

ts

ic

x-

r-

thickening system which phase separates at common s
@52,53#, under controlled stress conditions. In this case th
was a single~mean! strain rate for a given applied stress, a
the measured constitutive relation had anS shape rather than
the sidewaysS shape of Fig. 15.

VII. DISCUSSION

A. Dependence on gradient terms

Gradient terms appear in all equations of motion forK
Þ0 and for anyg, so to avoid unphysical equations witho
gradients~which cannot resolve interfaces! we must havel
;g/K,`. In the case ofK50 and finiteg, theQ equation
of motion has no explicit gradient terms and hence can
principle, support discontinuous solutions. Thef equation
has gradients in this case, arising from the termg(¹f)2 in
the free energy density, Eq.~3.2!, so the system will eventu
ally reach a state with smooth solutions in bothf and Q.
Conversely, forg50 there are gradient terms in both theQ
and f dynamics, with the latter arising from the term
f(¹Q)2 in the free-energy density Eq.~3.2!.

Phase boundaries forŝxy50.01, 0.03 are shown in Fig
17. For lP~0.0–30.0! the phase boundaries are the sam
within the precision of our numerical calculations, whi
there is a distinct difference forl5`. We have discretized
the system on a mesh of 125 points, and the range of ela
constants is such that the width of the interface is at leas
mesh points, large enough for smooth behavior and m
smaller than the system size.

We cannot rule out the possibility that changes inl shift
the phase boundaries by small amounts below our accur
which is of order 0.1% inu, but the apparent independenc
of the phase boundaries onl is curious. One might be
tempted to generalize and suggest that, for finitel, there
exists a selection criterion which involves only the homog
neous equations of motion, rather than requiring the in
mogenous terms as in the interface construction. An interf
construction may also be used to determine equilibri
phase boundaries, in which case a stationary interfac
equivalent to minimizing a free energy and the~relaxational!
dynamical equations derived from a variational principle@6#.

FIG. 17. I-N phase boundaries for common stress phase sep
tion as a function ofl/L, for L55.0. The diamondsl are forl5`
(K50,g51).
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In the case of a van der Waals fluid this reproduces
Maxwell construction.

A steady state equation for a single variablec with ho-
mogeneous and inhomogeneous terms of the form

s05 f hom~c!1 f inh~]c/]y! ~7.1!

can be integrated to yield a solvability condition fors0,
which is equivalent to the stable interface method. In eq
librium f inh integrates exactly without an integrating facto
since it typically arises from a variation of a free-ener
functional with respect toc, and the results0 ~correspond-
ing to the pressure in the van der Waals fluid! depends only
on f hom. Out of equilibrium, integration is not so simple, an
the solvability condition depends, generally, on the form
the gradient terms@60,35#.

In the multivariable case considered here, the steady-s
conditions for the order parameter and composition
coupled differential equations which are not integrable
shear flow. This is because of the termsk•Q1Q•kT in Eq.
~3.12! and (¹2Q)•Q2Q•(¹2Q) in Eq. ~3.30!. In extensional
flow k is symmetric, so thatk•Q1Q•kT integrates to
Tr(Q2k)/2, while in shear flow this term can only be inte
grated by introducing an integral representation@70#. Hence
a first integral of the steady-state equations cannot be fo
in shear flow, and it seems unlikely that a general condit
involving only the homogeneous portion of the steady-st
equations can determine coexistence. While we appea
find, for this set of gradient terms, solvability conditions th
are independent ofl for l,`, the relationship of this to a
variational principle remains unknown. We have not e
hausted the possible gradient terms. For example, hig
order gradients in the free energy@(¹2Q)2, etc.# would yield
higher-order differential equations for the interfacial profi
and other square gradient terms such asQab¹a¹bf are pos-
sible @71#. Hence, we believe that, for finitel, the apparent
independence of our results on gradient terms only applie
the particular (simple) family of gradient terms we have ch
sen. The structure of the differential equations describing
steady states may change abruptly forl5`, for which a term
is lost in the differential equations, leading to a distinc
different selection criteria and the shifted phase boundar
Fig. 17. Unfortunately, this particular set of equations is t
complex for this kind of analysis. For example, in a study
a simpler constitutive model, one can demonstrate that
selected stress depends on the detailed form of the gra
terms@35#.

Several workers have claimed to find an equal-area c
struction on the stress–strain-rate constitutive curve@30#.
That is, the ‘‘plateau’’ as the system traverses the two-ph
region is said to describe a path such that the areas above
below the plateau, enclosed by the plateau line and the
derlying constitutive curve, are the same. This is not t
here, as can be seen in Fig. 15.

B. Which phase separation is preferred?

Having calculatedboth common strain rate and commo
stress phase separation for the same system, and not
from Figs. 13 and 14 that there are compositions and sh
conditions which lie inside the two-phase regions of all th
calculated phase separations, we must address the que
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of which phase separation occurs. We have already arg
that we expectI-L phase separation at common stress to
metastable with respect toI-N phase separation at commo
stress. What about the relative stability ofI-N phase separa
tion at either common stress or common strain rate?

With limited one-dimensonal calculations for systems
different symmetry~annular bands at common stress a
stacked disklike bands for common strain rate!, it is impos-
sible to calculate the stability of one interface profile wi
respect to another. Renardy calculated the stability of co
mon stress coexistence to capillary fluctuations@68#, which
is a start, and such a stability analysis has been performe
part, on the layer orientation of smectic systems in flow@16#.
However, some insight can be obtained by examining
‘‘phase diagrams’’ in the chemical potential-field variab
~either stress or strain-rate! planes. The solid lines in Fig. 18
are analogous to lines of phase coexistence in, for exam
the pressure-temperature plane in a simple fluid.

Consider Fig. 18~a!. Here,ŝxy andm are the proper field
variables for phase separation at a common stress, and
solid lines denote theI-L and I-N phase boundaries. Th
dashed line denotes the range of stresses at coexistenc
common strain-rate phase separation@Fig. 18~a!#, for which
stress is a generalized density variable and strain rate
field variable.

FIG. 18. Phase diagrams in the chemical potentialm vs stress
plane~a! and them –strain-rate plane~b!. The solid lines denote the
phase boundaries for common stress phase coexistence in them-sxy

plane~a! and for common strain-rate coexistence in them-ġ plane
~b!. The dashed lines denote the coexisting stresses for com
strain-rate phase separation within the common stress phase
gram ~a!, and vice versa in~b!.
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FIG. 19. Phase diagrams in the~a! m-ġ and ~b! m-sxy planes forI -N coexistence~the N state is stable for higher strain rate or stre
respectively!. The thin vertical solid lines denote phase coexistence at common strain rate and stress in~a! and~b!, respectively. The broken
lines markedI g andNg denote the coexisting states at common strain rate in them-sxy plane~b!, while the broken linesI s andNs denote

the coexisting states at common stress, in them-ġ plane.~c! is the mean stress vs strain-rate curve. Shown is a pathA-B-C taken under the
proposition that the system maintains a global minimum in chemical potential. PointA is at coexistence in them-sxy plane~b!, and hence

corresponds to two points, on linesI s andNs , in them-ġ plane~a! for the two different strain rates of the coexisting phases. Similarly, p
C corresponds to coexistence at common strain rate in~a!, with the coexisting phases at different stresses lying on linesI g andNg in ~b!, at
the two pointsC. PointsB andB8 are coincident in~c!, and correspond to a crossover from phase separation at common stress~B! to phase
separation at common strain rate~B8!. The pathA-B-C in ~c! may be traced in~b! by following the upper horizontal arrow until phas
separation at common stress occurs atA, then along the segmentsA-B in ~b! or A-B 8 in ~a! until phase separation at common strain ra
occurs atB8. From this point untilC the system phase separates alongI g andNg , with a mean stress given by the thick diagonal solid arr
B-C in ~b! and the thick segmentB8-C in ~a!. The system emerges from the two-phase region atC on Ng , and continues throughD on the
high strain rate branch.
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Figure 18~a! indicates that, for a system undergoingI-N at
a common strain rate, the chemical potential and stress
the I phase falls within the single phaseN region of the
commonstressphase diagram. Hence, we expect thisI phase
to be unstable~or metastable! with respect to phase separ
tion at common stress. Similarly, the control paramet
~chemical potential and stress! for the N phase coexisting a
a common strain rate lie within the single phaseI region for
common stress phase separation, which we also expect
unstable~or metastable!. Conversely, for a system coexistin
at a common stress theI phase lies within the single phaseI
region of the common strain-rate phase diagram@Fig. 18~b!#,
and similarly for theN phase. This suggests that phase se
ration at a common strain rate is unstable~or metastable!
with respect to phase separation at common stress, w
phase separation at a common stress is stable.

Note that, ultimately, this selection of phase-coexiste
geometries follows from the transition being a shear-thinn
transition; for a shear-thickening transition the situati
could be reversed. In this case phase coexistence at a
mon strain rate and a givenm would imply a shear-induced
phase~analogous to theN phase! with a higher stress than
the I phase. If the phase-coexistence line for common st
~strain rate! lay within a loop corresponding to the stress
~strain rates! for common strain-rate~stress! coexistence,
then common strain-rate coexistence would be expecte
be stable, by analogy with the isotropic-nematic shear th
ning model. Obviously this argument is delicate. In a flu
where only one-phase coexistence~either common stress o
common strain rate! is supported by the dynamical equ
tions, this argument is moot.
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An alternative possibility is presented in Fig. 19 if on
argues that in steady state, among the possible phases w
are compatible with the interface solvability condition, th
chemical potential reaches its absolute minimum. Cons
increasing the strain rate for a given mean concentration.
thick horizontal arrows in Figs. 19~a!–19~c! denote the

m(sxy) andm(ġ) paths for the homogeneous high and lo
shear rate states, in the two phase diagrams. In Fig. 19~a! the
path isA-B 8-C-D , in Fig. 19~b! the path isA-B-C-D , and
in Fig. 19~c! the path isA-B-C-D .

This path ensures that the system maintains the minim
chemical potential for an imposed strain rate. Upon incre
ing the strain rate from zero, the system remains in the o
phase region untilA is reached, at which point phase sep
ration at common stress occurs. Note thatA spans two points
of coexistence in them-ġ plane@Fig. 19~a!# on the linesI s

andNs . Upon further increasing the strain rate, the syst
continues to phase-separate at common stress, following
segmentA-B in Fig. 19~b! and the two~coexisting! segments
A-B in Fig. 19~a!. The mean chemical potential and stra
rate follow the diagonal segmentA-B 8 in Fig. 19~a!. Upon
increasing thestrain rateaboveB, the system can continu
to maintain its lowest chemical potential by phase separa
with a common strain rate in the two phases, i.e., with sh
bands in the vorticity direction. Hence, the system next f
lows the pathB8-C in Fig. 19~a! (m-ġ plane! and the two
coexisting pathsB8-C in Fig. 19~b! (m-sxy plane!, with the
mean chemical potential and stress following the diago
segmentB-C in Fig. 19~b!. Finally, upon increasing the
strain rate aboveC, the system continues along the hig
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PRE 60 4413PHASE SEPARATION OF RIGID-ROD SUSPENSIONS . . .
strain-rate branch. The thin diagonal lines with arrow
B8-D in Fig. 19~a! andB-D in Fig. 19~b!, show the path tha
would be taken if the system passed through the two-ph
region entirely with a common stress in the two phases. T
scenario follows from minimizing the chemical potentia
and its correctness, of course, should be further examine
the full time evolution of the original dynamic equations.

It is probable that boundary conditions also play a ro
Consider a Couette device. Typically the walls provide u
form boundary conditions in the azimuthal direction, wh
the slight inhomogeneity of Couette flow induces an asy
metry between the inner and outer cylinders. The sligh
higher stress near the inner wall provides a preference for
high strain-rate nematic phase, and hence might enhanc
stability of common stress phase separation. Similarly,
intrinsic inhomogeneity~although weaker! in cone-and-plate
rheometry induces a preference for the common stress in
facial configuration@46#.

We are also unable to say anything about the numbe
spacing of bands. Analogies with equilibrium systems s
gest that phase separation would coarsen until the sys
formed two bands at different strain rates~for phase separa
tion at a common stress!. This is the behavior seen in visu
alizations of flow in Couette, cone-and-plate, and pipe geo
etries, where the intrinsic inhomogeneity provides a ‘‘see
for macroscopic phase separation@2,44–47,52#. Recent visu-
alization of banding in lamellar surfactant systems@38# indi-
cates that phase separation at a common strain rate ca
hibit bands~disklike bands in Couette flow! whose initial
spacing depends on the applied strain rate and that coars
time. Unlike common stress bands, which are expected
~and do! form macroscopic bands in Couette flow, there is
boundary effect in Couette~aside from perhaps sediment
tion! which would encourage common strain-rate bands
coalesce readily. Normal stresses may play a role in
process.

C. Stability at prescribed stress or prescribed strain rate

In calculating the phase diagrams, we have calculated
stability of the fluid under conditions of either fixed stra
rate or fixed stress. These limits of stability, analogous
spinodals in equilibrium systems, are displayed in Figs
and 14. Note that the stability limits and critical points diffe
depending on the control variable~stresss or strain rateġ).
To see why this is, note that schematically the dynam
equations of motion have the form

] tx5f~x,ġ !, ~7.2!

s5g~x,ġ !, ~7.3!

wherex comprises the dynamical variables~order parameter
Q and compositionf). The second equation relates the stre
to strain rate and dynamical variables at steady state~or in
the zero Reynolds number limit!, which implies that the
strain rateġ, for a given stress, is a functionġ5ġ(s,x).
Consider fluctuations about a steady statex0 : x5dx1x0.
The dynamics for the fluctuation obeys
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] t dx5H ]f

]x
1

]f

]ġ

]ġ

]xJ •dx ~7.4!

[$Mg1dMs%•dx. ~7.5!

The limit of stability for common strain rate is calculate
using the fluctuation matrixMg , while the limit of stability
for common stress was calculated usingMg1dMs . These
correspond to different stability criteria.

The question of which spinodal could be observed in
experiment relies on the accuracy of prescribed stress
prescribed strain-rate rheometers. For a rheometer opera
at a prescribed strain rate, then ifdx goes unstable through
Mg @in Eq. ~7.2!#, the stress increases due to Eq.~7.3! and no
attempt is made to control it, leading to instability. Howeve
consider a rheometer which maintains a prescribed stres
the system goes unstable in Eq.~7.2!, the bulk stress will
change due to Eq.~7.3!. A sensitive and fast enough rheom
eter will respond by adjusting the strain rate accordingly,
maintain the imposed stress. Hence, instability would be
termined by the sumMg1dMs .

Similarly, in equilibrium systems a locus of stability ma
be defined by, for example, the diverging of isothermal
adiabatic or isobaric or isochoric response functions~or the
vanishing of the appropriate modulus!. For example, the iso-
thermal and adiabatic compressibilitiesKT andKS differ by a
term proportional to the quotient of the square of the therm
expansion coefficientap and the isobaric heat capacitycp :

KT2KS5
vTap

2

cp
, ~7.6!

wherev is the specific volume.KT
21 vanishes along the spin

odal linevs(T), while it is evident thatKS
21 ~proportional to

the sound speed! does not. However, in equilibrium, th
critical point is uniquely defined in phase space, which
related to the fact that, for example, pressure is a uni
functionof the volume, and is in fact a state variable. Co
versely, we can see from the shape of the stress–strain
curves for the Doi model@e.g., Figs. 3~c!–3~e!#, that the
stress can be a multivalued function of strain rate; i.e., i
not a state function. Hence there is no compelling reaso
expect critical points at imposed strain rate to be the sam
critical points at imposed stress. Similarly, thetrue spinodal
or locus of stability is uniquely defined in an equilibrium
system because of the convexity requirement on the entr
@72#, and there is no such universal convexity requirem
~barring entropy production, which is minimized only und
restricted conditions, and only locally rather than global!
for nonequilibrium systems.

D. An analogy with equilibrium systems?

The liquid crystalline suspension under flow, indeed a
system which undergoes a macroscopic bulk flow-indu
phase transition, is analogous to an equilibrium ternary s
tem comprising speciesA, B, and solvent. In our case, th
roles ofA andB are played by the rigid-rod compositionf
and either the stresss or strain rateġ, depending on the
nature of the phase separation. For phase separation at
mon stress, the phase diagram in the stress-compos
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planes-f is analogous to themA-fB plane for the equilib-
rium system, while theġ-f plane is analogous to thefA-fB

plane. In either case, the density variables,$ġ,f% in flow and
$fA ,fB% in the analogous equilibrium system, are differe
in the two coexisting phases. The slope of the ‘‘plateau’’
the s-ġ plane, as the system traverses the two-phase re
of the phase diagram, is analogous to a slope in themA-fB
plane, the latter indicating that the chemical potential~or
osmotic pressure! of the two phases varies across the co
istence region.

Can this analogy be extended to the possibility of ph
separation at common stressor common strain rate? Cer
tainly, one can consider a ternary system under condition
either imposedfA or imposedmA , for which one generally
expects difference spinodal lines. That is, the spinodal is
termined by the instability of a matrix in the two
dimensional space spanned byfA andfB , and fixingfA or
mA projects this instability onto different subspaces. Expe
mental conditions may dictate that the spinodal line un
fixed fA is more likely to be seen, sincefA is conserved and
cannot equilibrate quickly to satisfy an imposedmA . How-
ever, we are not aware of any ternary equilibrium system
which the equilibrium coexistence conditions can differ; th
is, equilibrium isalwaysspecified by equality ofmA andmB
in the two phases, and never by equality offA .

VIII. SUMMARY

In this work we have proposed a straightforward pheno
enological extension to the Doi model for a solution of rigi
rod particles. We have added entropic terms and inclu
inhomogeneous terms in order to calculate phase separ
in shear flow. The main results of this study are as follow

~i! Phase separation may occur under conditions of c
mon stressor common strain rate, with different interfac
orientations with respect to flow geometry for the two cas

~ii ! Although both phase separations are possible,
phase diagrams in them-sxy andm-ġ planes~Fig. 18! sug-
gest that phase separation at a common strain rate is m
stable. This can be traced, for this model, to the she
thinning character of the transition. For a shear-thicken
transition an equivalent argument suggests that~if both are
kinematic possibilities! common stress phase separation
metastable with respect to strain-rate phase separation.

~iii ! The limits of stability ~‘‘spinodals’’! and critical
points for systems at prescribed stress and prescribed s
rate differ; the difference of spinodals is similar to equili
rium behavior, while the difference of critical points is r
lated to the fact that neither stress or strain rate are alw
unique state functions.

~iv! An argument based on minimizing the chemical p
tential predicts a complex crossover from common stres
common strain-rate phase separation for controlled str
rate experiments. The veracity of this assumption is
known.

~v! We have calculated phase coexistence among t
phases~paranematicI, flow-aligning nematicN, and log-
t
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rolling nematicL!, where only two phases existed in equilib
rium. We expectI-N phase coexistence to be the stable co
figuration ~Fig. 13!, although I-L phase coexistence coul
exist as a metastable state with approprate preparation.
do not expect three-phase coexistence for this model.

~vi! We have demonstrated how to calculate the me

stress–strain-rate relationships̄( ḡ̇) in the coexistence re

gion. The shape ofs̄( ḡ̇) is determined by the compositio
and strain rates of the coexisting phases@28#.

~vii ! A phase-separated system can exhibit an appare
unstable constitutive relation, with negative slope]sxy /]ġ.
Experiments have accessed such negative slope comp
curves under controlled stress~rather than controlled strain
rate! conditions@69#.

~viii ! Our method of solution is general and relies on t
existence of a set of dynamical equations of motion for
structural order parameter of the particular transition, inclu
ing the dynamic response to inhomogeneities.

~ix! For l5g/K finite, the phase boundaries we ha
found are, within our accuracy, independent of the relat
magnitude of the gradient terms in our free energy. Althou
this suggests that, for the restricted set of inhomogene
we have incorporated, a selection criterion exists involv
only the homogeneous equations of motion, this is not tru
general for complex fluids in flow@35#. For l5`, the phase
boundaries are slightly shifted.

~x! Studies at different aspect ratios suggest that sh
flow enhances polydispersity effects relative to their eff
on equilibrium phase boundaries.

We close by enumerating several open questions. F
systems such as wormlike micelles probably possess s
combination of a perturbed isotropic-nematic transition an
dynamic instability of the molecular constitutive relation.
is conceivable that suitable compositions of these syst
could yield a stress–strain-rate composition surface~Fig. 4!
with multiple folds. Second, it would be desirable to have
model shear-thickening system in which to calculate prop
ties of banded flows, to compare and contrast with the sh
thinning system studied here and to understand experim
on a wide range of systems, including clays and surfac
systems. Third, we have not addressed the number and
sible coarsening of bands and band configurations, and
kinetics of phase separation has hardly been treated theo
cally @2#, with experiments also at an early stage@2,29,51#.
Finally, we do not yet know the conditions which may, if
all, distinguish between common stress or common stra
rate phase coexistence.
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