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Phase separation of rigid-rod suspensions in shear flow
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We analyze the behavior of a suspension of rigid-rod-like particles in shear flow using a modified version of
the Doi model, and construct diagrams for phase coexistence under conditions of constant imposed stress and
constant imposed strain rate, among paranematic, flow-aligning nematic, and log-rolling nematic states. We
calculate the effective constitutive relations that would be measured through the regime of phase separation
into shear bands. We calculate phase coexistence by examining the stability of interfacial steady states and find
a wide range of possible “phase” behaviof$1063-651X99)06810-5

PACS numbgs): 83.70.Jr, 64.70.Md, 83.20.Hn, 64.1%Mh

[. INTRODUCTION a nonequilibrium potential and a variational principle
[26,27]. This possibility is intriguing, although it remains
Shear flow has profound effects on complex fluids. It canunproven. Early studies postulated a jump at the top of the
perturb equilibrium phase transitions, such as the isotropicstable viscous branctitop jumping”) [21,22,28, but ex-
to-nematic (-N) liquid crystalline transition in wormlike periments have shown that this is not the cg2@. Recent
micelles[1—3], thermotropic melt§4—7], or rigid-rod sus- studies have solved the homogeneous flow equations in vari-
pensiong 8,9]; the nematic-smectic transition in thermotro- Ous geometries using sophisticated hydrodynamic flow-
pic liquid crystals[10]; and the isotropic-to-lamellar transi- Solvers and found a selected str¢88,31]. However, evi-
tion [11] in surfactant systems. Shear can also inducdlence is growind32] that these calculations have history-
structures, such as the well-known multilamellar vesicleglependent stress selectiomhich is in fact no selectionor
(oniong in surfactant systemfl2—14, that exist only as introduce gradient terms due to the discretization of the sys-
metastable equilibrium phases. Another well-known effect igem. A final method, which we follow here, has been to
the transition between orientations of diblock copolymerincorporate(physically presentnonlocal contributions to the
lamellae in either the steady shear flpl%,16], or the oscil- ~ stress[5,6,33,34,9,32,35-37and examine the equations of
latory shear flow[17—19, as a function of shear rate or motion under steady banded flow conditions.
frequency, and temperature. Here we extend previous woi@] and calculate phase
A related phenomenon is dynamic instability in non- diagrams for rigid-rod suspensions in shear flow, solving for
Newtonian fluids whose theoreticdlomogeneousstress—  the interfacial profile between phases and using its properties
strain-rate constitutive relations exhibit multivalued behav-to determine the coexistence stress. As Fig. 1 indicates,
ior, as in theories of polymer mel{20,21 and wormlike ~phase separation is possibleeither a specified streséhori-
micelles[22—24. Such models may describe, for example,ZOHta| tie lines or a specified strain ratévertical tie lines.
the spurt effect, whereby the flow rate of a fluid in a pipeOnly recently has the latter possibility been speculated upon
changes discontinuously as a function of applied pressure
drop [25]. A nonmonotonic constitutive curve as in Fig. 1
typically has a segmerishown as a broken linavhere bulk
flow is unstable. If a mean strain rate is imposed which
forces the system to lie on an unstable part of the constitutive
relation, a natural resolution for this instability is to break the ©
system into two regions, often callé@dnds one on the high
strain rate branch and one on the low strain-rate branch, to
maintain the overall applied strain rate. The most important
unresolved question about these banded flows is, what deter-
mines the stress at which the system phase separates into
bands? Experiments on many systefreviewed in Sec. Il
A), particularly the wormlike micelle surfactant systems, re-
veal that there is a well-defined and reproducible selected . .
stress in a wide class of systems. strain rate ¥
There have been many suggestions for determining the g 1. stress—strain-rate curves for the Doi model with differ-
selected stress. Some workers have assumed the existencegf excluded volume parametargtaken from Fig. 3 beloy The
dashed line segments are unstatlaphysical steady states. The
straight lines indicate possible coexistence between stedes ||
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[28,9,27, and found experimentally38]. We explore this proof of banding; and Callaghagt al.[44—47 used NMR to

possibility explicitly for our model system, which possessesmeasure the velocity profile in various geometfiesluding

in addition to the high and low strain-ratparanematic and Couette, cone-and-plate, and pipe geometries

nematic, respectivelybranches shown in Fig. 1, a second  The transition in these cases is to a strongly aligned, pos-

high strain-rate branch in which the rods stand up in thesibly nematic, phase of wormlike micelles which has a lower

flow, parallel to the vorticity direction, instead of lying in the yjscosity than the quiescent phase. It is not known how the

shear plang39]. We study coexistence with this so-called |ength distribution changes in flow, although this is certainly

“I.og—rolllng” phase and find a rich nonequilibrium phase 4, important aspect of these “living” systeri$8]. Worm-

diagram. , _ like micellar system can possess an equilibrium nematic
The summary of this paper is as follows. In Sec. Il we g0 “ang in some cases the shear-induced phase is obvi-

discuss the general issues of shear banding and phase S€ aﬁly influenced by the proximity of an underlying nematic

ration in flow, and summarize the primary experimental evi-

dence for this behavior. In Sec. Ill we present the modifieopha‘c'e ransitiopl,2,49,3,50 H.owever, many.\{vormhke mi-
Doi model [40,41) and in Sec. IV we briefly discuss our cellar systems undergo banding at compositions much more

algorithm for calculating the phase diagram. The general aJilute than that fol -N coexistence, and it is probable that in

pects of the interface construction will be discussed elsethese cases flow instability is due to the nonlinear rheology

where[35]. We present the results for common stress- and®f thesg systems, which is in many respects sir_nilar to that of
strain-rate phase separation in Secs. V and VI, respectivelyié Doi-Edwards model of polymer melg3]. Since there
and discuss some of the implications for metastability andi'e at lease two possible effects nematic phase transition
experiments under controlled stress or controlled strain-rat@nd flow instability of the micellar constitutive relatipap-
conditions. We finish in Sec. VII with a discussion and sum-parently leading to flow instability, these systems are quite
mary. While some of these results have been briefly summatich. It is tempting to analyze the extent to which these sys-
rized elsewherd42], the current paper is a complete and tems display behavior analogous to the kinetics of equilib-
self-contained discussion of the problem. rium phase separation, and groups have recently begun to
The reader interested in the phenomenology of phase diatudy the kinetics of nonequilibrium phase separation
grams for sheared complex fluids rather than liquid crystal$2,29,51.
may safely skip Sec. IlIl; the rest of the paper is general, and Pine and co-workers have recently studied a wormlike
much of the discussion applies to any system undergoingurfactant system at extreme dilutions and found, surpris-
phase separation in shear flow. There are, essentially, tw@gly, that for low enough concentratiofisut still above the
steps to calculating phase behavior in flow. One must derivgyerlap concentratigrshear induces a viscoelastic phase that
t_he dynamical equations of motion for fluid flow, c_omposi- they interpret as a g¢b2—54. The origins and structure of
tion, and the relevant structural order paramelewhich is  his gel are currently unknown. In controlled stress experi-
quite difficult. Then, one must understand how to solve themy,onis they observe shear banding and a “plateau” for

and interpret the results. While the modified Doi model doe%tresses higher than a certain stress, in which the strain rate

nﬁt eﬁ?}"."ukSt fi" posdsn?le p?gie dla_gra(m; palrncu_lgtr{ 4 decreasess shear induces the gel. Above the stress at which
shear-thickening model would be a nice complemenhas the gel fills the sample cell, the strain rate increases again to

many uni\_/ersal fe_atures. _One extremely i_mpor_tant concept Iéomplete a dramati& curve. For controlled strain-rate ex-
that density an_d field variables are ill-defined in nonequnlb-periments the system jumps, at a well defined strain rate,
rium systemseither stressor strain rate may act as a control p v veen the gel and solution phases.
parameter analpgous to an eq“"'b““”.‘ field vana@eg., Another well-studied system is the onion lamellar surfac-
pressure, chem|call potenmaborrespondmg tp the different tant phase, originally studied by Roux, Diat, and Nglk2—
orientations pf the mte_rfac_e_ between coexisting phases. Alsqm]' These systems display a bewildering variety of transi-
one can gain much_ intuition from the L_mderlymg SUeSS—inns between lamellar, aligned-lamellar, onion, and onion
straln-rate—compo§|t|0|surf§ce a fact which we feel has crystal phases of various symmetries, as functions of applied
been underappreciated until now. shear flow, temperature, and composition. As an example,
one particular system undergoes transitions, with increasing
Il. SHEAR BANDING strain rate, from disordered lamellae to onion, to onion-
lamellae coexistencgén which coexistence is inferred from a
plateau in the stress—strain-rate cujye® well-ordered
Shear banding has been confirmed in many systemismellae[13]. Recently, Bonn and co-workef88] found
through direct optical and NMR visualization, and deducedshear-induced transitions between different gel states of
from rheological measurements. The best-studied systeniamellar onion solutions with shear ban@ssualized by in-
are surfactant solutions of various kinds, including wormlikeserting tracer particleoriented with interface normals in the
micelles and onion-lamellar phases. Rehage and Hoffmanvorticity direction, indicating phase separation at common
[24] measured a plateau in the stress—strain-rate relation fatrain rate instead of common stress, as we clarify below. In
wormlike micelles in shear flow. This behavior has sincethis case the averaged stress—strain-rate constitutive relation
been seen in a number of wormlike micellar systems in varifollowed a sidewaysS curve under controlled strain-rate
ous flow geometries, by the Montpelli€t—3], Strasbourg conditions.
[43], Edinburgh[29], and Massey groupf44—47. Berret Mather et al. [7] have recently studied a thermotropic
et al. [3] visualized shear bands in the plateau region of thepolymer liquid crystal using visual and rheological measure-
stress—strain-rate curves using optical techniques, providingients, and inferred a shear-induced nematic phase transition

A. Experimental evidence
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uniguely defined and determine phase coexistence. In
sheared fluids, one needs an extra field variable to determine
the extended phase diagram. Howeviar, a system with
more than one choice of coexisting geometry, the appropri-
ate field variable may not necessarily be identified a priori
The complete answer of how to determittieeoretically the

FIG. 2. Geometries for phase separation at common stiefgs ~ dynamic field variable is not known. Of course, the nature of
or strain-rate(right) in a Couette rheometer. For phase separation ath€ constitutive relation may help, for example the top curve
a common stresdeft) phased and Il have different strain rates, Of the Fig. 1 does not allow the strain rate as the field vari-
while at a common strain rateight) they have different stresses. ~ able. We will come back to discuss some possible answers to
is the vorticity axisX is the flow direction, and) is the flow gra-  this interesting problem in Sec. VIl Bee als¢28] for other
dient axis. suggestions

Another important difference from equilibrium systems is

and phase separation, the latter which they attribute to polyevident when, say, assuming the systems choose to form
dispersity. shear bands at common stress, we try to determine at which

In summary, shear-banding has been seen in several sygfress a system forms shear bands. The constitutive relations
tems, and in all cases is associated with some flow-induceshown in Fig. 1 are calculated for homogeneous states, and
change in the fluid microstructure. Most systems are stilthere is no apparent prescription for determining the selected
poorly understood52,14,3§ and, given the range of com- banding stress, despite the experimental evidence for a se-
plexity, it is certain that many qualitatively new phenomenalected stress. A similar apparent degeneracy occurs in first-

remain to be discovered. order phase transitions in equilibrium statistical mechanics,
but is easily resolved by demanding that the system mini-
B. Theoretical issues mize its total free energy, or, equivalently, by appealing to

) ] _ the convexity of the free energy of the equilibrium thermo-
The crux of the problem from a theoretical point of view gynamic systemgs5]. This leads to equality of field vari-
may be appreciated from Fig. 1. These stress—strain-raigyjes petween two phases and the common tangent condition
curves are somewhat reminiscent of pressure-denpiy)(  (e.g., the Maxwell equal areas construction for liquid-gas
isotherms for a liquid-gas system. Curve segments withpexistencd56], or the equal osmotic pressure condition,
negative slopego,,/dy<0, are unstable and cannot de- aided by equal chemical potential, in rod suspens[&T$).
scribe a physical state of a bulk homogeneous system. In the shear band problem, an unambiguous resolution of
Analogously, isotherms with negative slopgs dp<0 have this degeneracy is to consider the fithomogeneousi.e.,
negative bulk moduli and are unstable. The liquid-gas systemonlocal in spaceequations of motion, and determine phase
resolves this instability by phase-separating into regions otoexistence by that choice of field variabl@ppropriately
different densitiegsaccording to the lever rule to maintain the chosen by handfor which there exists atationaryinterfa-
average densily Similarly, the banded flows seen in the cial solution to the steady-state differential equations of mo-
experiments described above appear to be a nonequilibriution [5,34,9. For zero stress this technique reduces, as it
phase separation into regions of high and low strain-rateshould, to minimization of the free energy. The importance
maintaining the applied mean strain rate. of inhomogeneous terms in fluid equations of motion has
In previous work[5,6,9 we constructed a “phase dia- been noted by several groups, who pointed out that the stan-
gram” by pursuing an analogy between homogeneous stablgard fluid equations can have ill-defined mathematical solu-
steady states and equilibrium phases. As in equilibrium, nontions [58] if such terms are not included. Of course, if the
equilibrium “phases” may be separated, in field variable phase diagram depends sensitively on the form or magnitude
space, by hypersurfaces representing contingelgs, criti-  of the inhomogeneous terms, one needs a detailed under-
cal points/liney or discontinuoug*first-order”) transitions.  standing of the underlying physics. The use of a stable inter-
Coexistence implies an inhomogeneous state spanning sedface to select among possible coexisting states was first pos-
rate branches of the homogeneous flow curves. Note, howulated for nonlinear dynamical systems, as far as we know,
ever, that there is an ambiguity in connecting separatdy Kramer[59], and later by Pomeal60], and was first
branches of the homogeneous flow curves in Fig. 1. The toppplied (independently to complex fluids in Ref[6]. The
curve permits coexistence of states with the same stress ainttlusion of gradient terms in constitutive relations is rapidly
different strain rates, while the lower curve also allows co-gaining acceptance, as recent unpublished work by Goveas
existence of states with the same strain rate and differer{phase separation of model blends of long and short poly-
stresse$28,9]. merg [36] and Dhont(introduction of model gradient terms
Figure 2 shows that phase separation at a common stregs resolve stress selectipf87] indicates.
occurs such that the interface between bands is parallel to the In this work we study a model for rigid-rod suspensions in
vorticity-velocity plane (annular bands, in Couette flow shear flow. While there are certainly ongoing experiments on
while phase separation at a common strain rate occurs witthese systemf7], the primary motivation for this extended
the interface between bands parallel to the velocity—velocitywork is to explore the manner in which phase separation and
gradient plandstacked disks, in Couette flow coexistence occurs in complex fluids in flow. The approxi-
This highlights a striking contrast between equilibrium mations used in obtaining our equations are sevi@iud-
and nonequilibrium systems. In equilibrium the field vari-ing a decoupling approximation whose defects are well-
ables (pressure, temperature, chemical poteptidre known [61]), and we expect qualitative agreement at best.
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However, this is the first complete study of which we are

V2
aware of nonequilibrium phase separation of a complex fluid u=g¢L o (3.5
in flow for a concrete model, and we hope it illuminates the
phenomenology of flow-induced phase transitions. whereLL=L,/d is the rod aspect ratio and is an O(1)

prefactor defined by
. METHODOLOGY
v, =ad?L,. (3.6
We seek the equations of motion for a solution of rodlike
particles. The most useful dynamic variables describing thé&or spherocylindersy= =[1—1/(3L) /8, which reduces, in
long-wavelength hydrodynamic degrees of freedom are théhe limit L—oo, to a=7/8=0.39. We useu and ¢ inter-

volume fractione(r), the fluid velocityv(r), and the nem- changeably below as a composition variable.

atic order parameter tensor In much of what follows, we make two further assump-
tions to reduce the number of parameters in our model. We
Qup(1)=(vovg—58,p), (3.)  fix v4 by assuming
where v is the rod orientations anl) denotes an average vi=Lvs, (3.7

around the point. Previous studies of liquid crystals under
shear flow have been either for thermotropibs6], where
::hoip;ﬁz;esér\:ave ngiespizts ebnetl,ov;razicr)rt]:loag;gge\év&ts gagpp;c:qsslfg) sume that the geometric facigr/ « has the value unity, so
[8,39], where phase coexisting was not considered. that

Our work below is based on the model extending that of u=oL, (3.9
Doi [40,41]. Seeet al. [8] studied the Doi model in shear
flow, but did not attempt to consider phase coexistencewhich corresponds to a particular shape of the rigid-rod mol-
Bhaveet al.[39] analyzed this model in more detail, but did ecules. These two assumptions specify the detailed shape and
not consider realistic phase-separation behavior. We augrolume ratio of the system we study below. For slightly dif-
ment this model with reasonable estimates for translationgerent systems wittv, # Lv, or v,/a# 1, our work should
entropy loss upon phase separation and for the free-energyill provide an accurate qualitative picture.
cost due to spatial inhomogeneities. Zubarev studied shear- The first two terms of Eq(3.2) comprise the entropy of
induced phase separation in a variation of the Doi model imixing, and the first three terms in square brackets are from
flow based on the equality of nonequilibrium free energiesDoi’'s expansion of the free enerdgerived per solute mol-
calculated from the flow-perturbed orientational distributioneculg in powers of the nematic order parame€r These
function[26]. Zubarev only considered phase separation at &erms were derived from the Smoluchowski equation for the
common strain rate, and did not treat the rheological redistribution function of rod orientatior{€0,41]. We keep the

which corresponds to a particular volume of the solvent mol-
ﬁcules relative to that of the rodlike molecules. Further, we

sponse(stres$ of the system or log-rolling states. expansion to fourth order to describe a first-order transition
and give the correct qualitative trends.
A. Equations of motion Assuming Eqs(3.7) and(3.8), we calculate the following

The free energye.g., as in Ref[57)) is given by biphasic coexistence regions:

¢ (1-9)

{U,=2.6925,=2.7080 (L=5.0), (3.9
]—"(dJ,Q):kBTf d3r(v—ln b+

v., =4 {u=2.6930uy=2.7074 (L=4.7,  (3.10

whereu, anduy are the excluded volume parametérem-
positiong for the coexisting isotropic and nematic phases,
respectively. Note the very weak dependence of the biphasic
1 27,12 2 regime(in the scaled variabla=L¢) on L.
FaK(VaQa) I ZVS(V¢) ] 32 The last two terms in Eq(3.2) penalize spatial inhomo-
geneities. By adding the single term proportionalkiove
Here, “Tr” denotes the tracey, andv, are rod and solvent have assumed a particular relation for the Frank constants,

+ Vi[%(l— ITrQ?—3uTrQé+2u(Tr@?)?

monomer volumes, and (K1=K,=K,K3=0) [62,63. Although Odijk has calculated
) these constants for model liquid crystais the nematic re-
u=wycdLg (3.9  gime [64], we will see below that this choice is probably

unimportant for this model. More generally, we expect the
is Doi's excluded volume parametp40,41], wherec is the  Frank constants to vary as functions @{r) in physical
concentration(number/volumg of rods of lengthLy and di-  systems, a situation which we have not addressed here. The
ameterd, and v, is a geometrical prefactdRef. [40] esti-  final term penalizes composition gradiefs]. We are not

matedv,=57/16=0.98). The volume fractiorp is aware of any calculations af for solutions of rodlike par-
ticles. In Eq.(3.2), we assume an athermal solution with no
p=cv,, (3.4  explicit interaction energy.

The nematic order parameter obeys the following equa-
in terms of which tion of motion[40,41:
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. = . )
(d+v-V)Q=F(#Q)+G(¢.Q). (313 p(0+V-VIV=V [ 2765+ o( b, k,Q) |+ £V¢—Vp,
where «k,3=Vgv,. In Eq. (3.11) the (reactive ordering (3.17)
termF is given by

_2 T 1 where 7 is the solvent viscosityp the fluid mass density,

FllQ =56+ 1 QF Qs —2(Q 3I)Tr(Q'K)’(3 12 and the pressurp enforces incompressibilityy - v=0. For

' the low Reynold’s number situations considered here, and
where & is the symmetric part ofc and | is the identity for ste_ady shear flow, we will equate the left-hand side of the
tensor. For simplicity, we have chosen the form appropriat&duation above to zero.
for an infinite aspect ratigthe prefactors differ byO(1) The constitutive relation for the stess tensgfp, x,Q)
constants for finite aspect ratip&1]]. The couplingF to the was derlyed by Doi .and co-worke_rs, and mcludgs dissipative
flow both induces order and dictates a preferred orientatiord €lastic parts. Since the elastic stress domiriats we
The dissipative portior is keep only this part:

D, v, = _OH- o
G(¢,Q)=6kBT EH, (3.13 0= 0gjastic= —3H+H-Q-Q-H-VQ,p 5VQaﬁ('3 5
where
The first term of Eq(3.18 was given by Do{40], while the
_ v1Do last three terms were derived la{&] and are equivalent to
D,= (314 the elastic stress due to Frank elasti¢@g], generalized to a

3 2\ 2 3\2
(1=2 TrQ)%(cLo) description in terms of the nematic order param€eaather
than the nematic director. Note that the last three terms van-
ish for a homogeneous system.

Finally, the composition equation of motion is of the

(3.15  Cahn-Hilliard form[65],

is the collective rotational diffusion coefficient and

OF , _ OF
3 r

Q *8Q

is the molecular fieldD,, is the single-rod rotational diffu- (0+Vv-V)¢=—V-J=V-M-Vu, (319

sion coefficient andv, is an O(1) geometrical prefactor,
which will be fixed below Eq(3.30. The rotational diffu- whereM is the mobility tensor and the chemical potential is
sion coefficient is given by

kgTInL OF
= , (3.16 == .
37777L8 H o

(3.20

ro

where 7 is the solvent viscosity. Th® dependence in the The diffusive current iss)= — M-V . The complete dynam-

denominator of Eq(3.14 enhances Eorientation for well- jcs is thus described by Eqe.11), (3.17), and(3.19.

ordered systemf40]. Our choice forD, is crude, since it The dynamical equations of motion for other complex flu-

applies to rods in concentrated solution and we use it in thé&s have the same theoretical structure: equations of motion

concentrated and semidilute regimes. As with many of oufor the conserved quantities and the broken-symmetry or

approximations, this gives us a tractable model system witllow-induced structural order paramet@nalogous toQ),

which to study the phenomenology of phase separation. and a constitutive relation for the stress as a function of
Doi and co-workers derived E@43.11) for homogeneous composition and order parametd®6]. For a given system

systems. We extend this to inhomogeneous systems by irand set of equations of motion, the analysis below is generic.

cluding the gradient terms implicit in the functional deriva- For some local models, internal dynamjésy. (3.11)] can be

tive which definedH. Our choice off is the so-called qua- eliminated to give the stress as a history integral over the

dratic closure approximation to the Smoluchowski equatiorstrain rate. In polymer melf0] and in wormlike micelles

[41]. This approximation ensures that the magnitude of th¢23] far from a nematic regime, this leads to nonmonotonic

order parameter remains in the physical range in the limit obtress—strain-rate curves. However, augmenting these inte-

strong ordering, but is known to incorrectly predict phenom-gral theories with nonlocal terms to calculate interface pro-

ena such as director tumbling and wagging. Many workerdiles is nontrivial.

have investigated the subtleties of various closure approxi-

mations and the degree to which they reproduce realistic

flow behavior[61]. Since our primary goal is to explore the

method for calculating phase behavior and outline some of In this work we study planar shear flow, specified by

the possibilities for coexistence under flow, we confine our-

selves to this well-studied model. V() = (1) (3.21)
The fluid velocity obey$40,41,66 ay ne- '

B. Steady-state conditions
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For homogeneous flowg(r)=yyx. The phase diagram is
given by the domains of stable steady-state solutions to the
equations of motion for applied shear stress or strain rate, in
the phase space spanned by

(¢,ny) (322)

(¢.7) (3.23
For phase separation at common stress, the stress is uniforWhere Egs.(3.7) and (3.8) have been used to specify the

; " Molecular geometr is a constant of integration, and
and the strain rate partitions between the two phases; while 9 Yo g
for phase separation at common strain rate, the strain rate is

po=p(r), (3.3

w—F -+i[¢ln¢+L(1—¢)ln(1— )]
kBT_ Doi (9¢ d)

(common stress J . ) )
oL Fooit2K(VQ —gLVie,  (3.32
(common strain rabe

uniform and the shear stress partitions between the two

Fpo=2(1=3WTrQ?=3uTrQ*+ u(TrQ?)2

phases.
The strain rate tensor is given by
01 0
k=y{ 0 0 0O
0 0 O

(3.29

Upon rescaling,
L2

= —2,
6D ov1v5

A

Y (3.29

~ 0'1/2L3
T BkeT

(3.2

the steady-state condition for the order paramdteg.

(3.11]is

1

0= H+ 3 F,
WLA(1-3TrQ?)?

(3.27
whereF = yF and

+uQTrQ?-KV?2Q.
(3.289

- u I
—H=(1—§ Q—u(Qz—gTer

(3.33

Note that the mobility tensa¥l plays no role in the steady-

state conditions, or in the resulting phase diagram.
Egs.(3.27), (3.30, and(3.3) completely specify the sys-

tem in planar shear. Solving these equations will occupy the

remainder of this work. Note that variabléseo, u/kgT are

all dimensionless quantities.

IV. CALCULATION OF PHASE DIAGRAMS
A. Interface calculation

The phase diagram is specified by solving E(&27),
(3.30, and (3.3 for given uy and boundary stressgy.
Nonequilibrium “phases” are defined as the stable steady-
state space-uniform solutions to these equations. Tihbse
mogeneougquations comprise a set of ordinary differential
equations, through the gradients that appear in the stress and
in the functional derivatives that define andH. The only
parameters of the theory are the rod aspect ratand the
ratio of elastic constants,

N=—+ 4.9

(K may be absorbed into the length scale of the system
We first fix ¢ (i.e., u) and solve the homogeneous alge-

In steady-state planar shear flow, the velocity gradientraic versions of Eqs(3.27 and (3.30 for Q and y as a
are normal to the flow direction, so the convective derivativefunction ofogy. In the few cases where the phase diagram in
vanishes and Eq3.27) specifies the order parameter in a the o,,-x plane has a transition line parallel to theaxis,
homogeneous flow. Under these conditions, integration ofne must first fixuo, and then determine,. This is done for
the momentum equatiof8.17) gives a constant stress, all ¢. BecauseF(¢,Q) describes arl-N transition, at a
(329 given stress, multiple roots exist with distinct strain rates and

00=0—pl+27:, Q. Figure 3 shows the stress strain-rate relations for homo-
whereoy is the boundary stress. The rescaled shear stress

geneous solutions to EgE3.27) and (3.30 for L=5.0 and

A=1.0.

“0 _pan_ " 2. O— . U2 The isotropic branch has a larger viscosity than the nem-

Txy=AYTULIHFK(VIQ-Q=Q- V7 Q) )y, (3:30 atic branch, and has an increasing effective viscosity for in-

WhereAzzylyg(m L)/(37) is a constant of order unity: we Creasing concentration, reflec'_[ing the contributisth in Eq.

takeA= 1 for the remainder of this work, which corresponds (3.30. Conversely, the nematic branch has a lower stress at

to a particular choice fow,. As with the assumptions of higher concentrations due to the increased nematic order,

molecular geometry embodied in, and a [Egs. (3.7) and ~ Which permits less-hindered motion.

(3.8)], different values for should not qualitatively change  For a dilute isotropic systerfcurve a), shear flow con-

the nature of our results. tinuously induces nematic order. A more aligned system has
Integrating the steady-state composition equati®i9 a lower effective viscosity, so the stresqy) increases

and using the boundary condition that material cannot enteslower than linearly(shear thins as the magnitude of the

or leave the system, we find order paramete increases. Eventually the system attains,
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FIG. 3. Homogeneous streés(y vs strain ratey behavior for
various excluded volume4,=5.0 and\=1.0. Dotted lines mark
unstable branches. Similarly, curves along whigh/d¢<<0 are
linearly unstable.

smoothly, a high strain-rate state with a much lower viscos-
ity than in the limit of zero stress. For more concentrated
systemgcurvesb, ¢, andd), shear flow induces a transition

to a nematic phase with lower viscosity, angly) is non- I
monotonic. There is a region of stresses for which two stable A A AR AV AT A
strain rates exist, on either the nematic or isotropic branche: 2.59 2.60 2.61 262
of the constitutive curve. For compositions inside the bipha- Excluded volume
sic regime(curve e), both nematic and isotropic branches |G, 5. (a) Reduced strain rat§(u) and(b) chemical potential
eX|_st in the__l|m|t qf zero stress, with ?he isotropic branch u(u) for the stress contour in Fig. 4&(“:0_05). The tie line is
Iqsmg stability at high enough stress. Flnfa(lnot shown for. calculated using the interface construction.
highly concentrated systems only nematic branches exist.

As mentioned in Sec. Il B, we calculate the phase diagram . . . )
by explicitly constructing the coexisting interfacial solution Fig- 9(b). There is a continuum range gf, which allows
[6]. In common stress coexistence, for example, the coexisffossible coexisting pairs of state®Recall thatu is propor-
ing states havelifferentstrain rates and, generally, different tional to the rod volume fractiokp.)
compositions. Hence, they connect the high and low strain- We now impose the interface solvability condition as fol-
rate branches of two different curves in Fig. 3. It is easiest tdows. For a given stressgy, we determine a specific coex-
visualize this by considering the intersection of a plane at astence chemical potentialy, which allows a stable interfa-
given stressry, with the surfacer,,(y,u), as in Fig. 4. cial solution to Eqs(3.27), (3.30, and(3.31). In practice, we

At a given stress, the strain rate varies with compositioreliminate y(r) from Eq. (3.27 using Eq.(3.30, and solve
as shown in Fig. &). At coexistence, the chemical potential Egs.(3.27) and(3.31) for the interfacial profile, with bound-
u(r) must be constant through the interface, as dictated byry conditions(fixed Q andu) chosen by two points on the
Eq. (3.31. The functional form of the nonequilibrium chemi- |ow and high strain-rate branches of Figbpwith the same
cal potential is known from Eq(3.32, and depends on the ., we adjustu, until a stationary interfacial profile is
strain rate through the dependence of the nematic order pgound. This solvability criterion gives sharp selection gn
rameter on the strain rate in steady state. We pi@t) in and in this way determines a tie line on tiyeu plane, Fig.
5(a). By varying the stress, we compute the entire phase
diagram in theo,,-u and y-u planes.

For phase separation at a common strain rate, the con-
struction is analogous. One slices a vertical plane through
Fig. 4 at a given strain rate, constructs the cym(e) along
the intersection with the surface, and searches for a station-
s ary interfacial solution.

'{é?“"z Z The interface calculations are carried out by discretizing
Ghr o the system on a one-dimensional mesh and, from smooth
initial conditions, evolving Eqs(3.27), (3.30, and (3.3))
forward using fictitious dynamics calculated with an implicit
Crank-Nicholson scheme. Spatial variations are only allowed

FIG. 4. Stress-strain-composition surface for the curves in Figin the direction in which phase separation occurs, so we re-

3. The plane is ab),=0.05. place

-0.20
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6.0 T

J
— common stress
aJy
— common strain rate, - _

92 o 4.0 L .
wherez is in the vorticity direction. We fix the values of S
andQ at either side of the interface to lie on the high and low %
strain-rate branches of Fig. 5, begin with smooth initial con- § i i
ditions, and let the system *“evolve” towards steady state. + 20 - | u=2.7 7

An interface develops between the two phases, and moves to - u=2.9 1
one boundary or the other. For a given stress, coexistence is - 8
determined by that chemical potentjalfor which a station- L -
ary interface lies in the interior of the systdin the limit of (11 < N S I
large system size[6]. An analogous construction may be 0.0 05 1.0 1.5
made by maintaining a fixed mean strain rate on the unstable
part of a homogeneous curve, and then starting up the system
and allowing it to select a stress and chemical potential. In  FIG. 6. Constitutive relations far, N, andL states, folL.=5.0
either case the selected stress is that stress for which a stad two values for the excluded volume parameter.

tionary interfacial solution between the high and low strain- o . o .
rate branchesxists Such an interfacial solution is known in (i) N Flow-aligning nematic The flow-aligning nematic
dynamical systems theory as a heteroclinic ofBR,60,9, state is much more strongly aligned, has slight biaxiality in-

and further work will investigate this in more detail for sim- duced by the flow, and has the major axis of alignment in the
pler model systemg35,32,67. flow plane at an angle of a few degrees relative to the flow
We restrict the nematic order parameter to direction. Thel andN states have the same symmetry.
(iii) L Log-rolling nematic The log-rolling phase is also a
well-aligned and almost uniaxial phase, but with major axis

strain rate 5 x 10*

0 .
i s of alignment in the vorticity £) direction, so the rods spin
Q=9 Q2 0 , (4.3 about their major axes.
0 0 —(gi+ay) The | phase is stable at lower volume fractions and

merges with the\ phase at high strain rates. Thephase is

since all steady-state solutions with nonzero eleméqyisor ~ Stable only at higher volume fractions, and is destabilized at
Q,, are unstable due to the symmetry of shear f[88]. In high enough strain rates. For low strain rates the stress of the
a similar calculation for thermotropic nematics in shear flow, State is lower than that of thé state, which is lower than
we have found that this restriction @reproduces the same that of thel state(see Fig. 6. B _
selected stress as that obtained when keeping the full tensor Figuré 7 shows the regions of stability of the various
[6]. states. The loop in Fig. (@) ooccurs for compositions such
For planar shear flow and a wide class of equations ofhat the constitutive curve(y) has the shape of curiein
motion, we have shown that if a coexisting solution exists, itFig. 3. Similar phase-plane plots were calculated by Bhave
occurs at discrete points in the parameter[88]. For ex- et al.[39] and Seeet al. [8]. They did not consider the mix-
ample, for a given stressgy’ coexistence can occur only at ing entropy needed to generate a realistic nematic transition,
discrete values foro, that is, along lines in the field variable however, and always generated solutions for a given strain
space spanned by,,-u. This is analogous to equilibrium rate instead of a given stre(ahls explains the absence of a
systems where, for example, phase transitions in a simpl®op in their phase-plane plog-¢). Their plots (compare
fluid occur along lines, rather than within regions, in theFig. 5 of Ref.[39]) correspond to truncating the loop in Fig.
pressure-temperature plane. 7(a). Figure 1b) has a similar, barely discernable, loop near
Note that a one-dimensional calculation does not deterthe critical point, within which there are no stable states.
mine the stability of the interfacial solution with respect to This instability is due to the instability of the composition
transverse undulatior(sapillary waveg which could be im-  equation, Eq(3.19. In this region
portant in, particularly, the common stress geomgagi.

d
2l <o (4.4

B. Homogeneous solutions I Tyy

The modified Doi model in the quadratic closure approxi-yhich is equivalent to a negative diffusion coefficient, and is

mation has three stable solutions in homogeneous plangajogous to the conventional definition of the spinodal line
shear flow. We refer the reader to Bhaeeal. for further 5, ordinary equilibrium demixing.

details[39].
(i) I Paranematic The paranematic staténduced from a V. COMMON STRESS COEXISTENCE
disordered equilibrium phase. The order paramedeis
small and fairly biaxial, with major axis lying in the shear ~ For common stress coexistence the interface lies jn the
plane at an angle of almost/4 relative to the flow direction. velocity-vorticity plane, and inhomogeneities are in the
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FIG. 7. Regions of stability of paranematig, nematic(N), and 2.550 2.600 2.650 2.700
log-rolling (L) states in the strain-rate—compositita and stress- (a) Excluded volume parameter u

composition(b) planes foiL =5.0. Note that the loop ifa) contains

no stable states. Stability limits are calculated with respect to both  FIG. 8. Phase diagram in thé')(y-u) (@ and (y-u) (b) planes
order parameter and composition fluctuations, for a given controlledor L=5.0, A=1.0, along with the limits of stability of and N
stress. The thin loop ifb) encloses a region with no stable states, phases.

due to the instability of the composition equation.

direction (see Fig. 2. The stress balance condition at the the flow-aligning nematip and para}nemgtic states have the
interface iso-- y uniform. ayy is taken care of by the pressure same symmetryQ is biaxia) and their major axes are in the

i ) o shear plane.
and oz, vanishes by symmetrno flow in thez direction), More interesting is the changing slope of the tie lines. For
leaving continuity of the shear stresg, through the inter-

f Th - haskandil h ; d weak stresses the equilibrium system is slightly perturbed
ace. The two coexisting phaskan ave strainrates and 5 the tie lines are almost horizontal. For high stresses the
compositions partitioned according to

tie lines become more vertical and the composition differ-

- ence between the phases decreases. The slope of the tie lines
¢=Lht(1-0dn, 6.0 determines the shape of the mean stress—strain-rate relation
;: g'y,+(1—§) 'y” (5.2) ;Xy( ;y) that would be measured in steady-state experiments.

Mean constitutive relationsConsider a composition in

wherea and;are the mean composition and strain rate anc}he raigelvhere phase separation occurs. For small applied
[ is the fraction of material in phade stressoy(y) varies smoothly until the two-phase region is
reached. At this stress, a tiny band of high strain-rate
strongly aligned nematic material appears, with volume frac-
tion determined by the lever rule, Eh.1). The mean strain

A. Paranematic—flow aligning coexistence(I-N)

Phase diagramFigure 8 shows the tie lines computed on ) )
the (&Xy—u) and (y-u) planes according to the procedure rate v is determined by the_levg_r rule, E¢.2), and the
outlined in Sec. Ill. Several features should be noted. Flowneasured constitutive relatian,,(y) is nonanalytic at this
induces nematic behavior in what, in equilibrium, would bepoint (see Fig. 9. As the stress is increased further, the sys-
an isotropic phase. The tie lines are horizontal in thg{u) ~ tem traverses the two-phase region by jumping from tie line
plane, since phases coexist at a prescribed stress, and havi®die line. Each successive tie line has a higher stress, a
positive slope in the §-u) plane because the more concen-higher mean strain rate, and a steadily increasing volume
trated nematic phase flows faster. There is a critical point afraction of nematic phase. The compositions of both coexist-
sufficiently strong stress, whose existence is expected sindeg phases change steadily through the two-phase region.



4406 PETER D. OLMSTED AND C.-Y. DAVID LU PRE 60

7.3 65 ——————————; T T T
B L (b) 151 () A
®© L ] 10+ -
% 74 - i l ",9 |
L | ‘." n
& 881 ] o5l .
2 ! i u=2.58 | A u=2.685
w H 4
69 —H L 50 Lo 1L 0.0 —— L
1.0 11 1.2 0.7 0.9 1.1 0.0 0.1 0.2 03
mean strain rate j x 104 3 x 10 3 x 10

FIG. 9. Mean stress—strain-rate curves for coexistence at common strdss; 5dd and\=1.0. The solid lines denoteandN branches;
the dotted line in each figure denotes the stableranch with which the state coexists at the low strain-rate boundary of the coexistence
region, at a strain rate marked by an open cifeleThe solid circles® and thick solid line denote the stress that would be measured in the
banded regime. Phase coexistence occurs between phadiéem@it compositions than the mean compositions=@.555, 2.58, 2.685).
The unstable portion of the homogeneous flow curve is showa)iand(b), but not(c). Note that the plateaus in the two-phase regions in
(a) and (b) rather obviously doot satisfy an equal area construction with the underlying constitutive curve at the mean composition.

The constitutive relatior;xy('y) through the two phase v_vherem(cr) is the slope ofa_tie line with stress value the
region is determined by the spacing and splay of the tie linedines {o1(¢),on(4), 7 (). (4)} bound the phase-
For mean compositiong close to the equilibrium isotropic- coeX|ste_nc_e domains n thp—-¢ and y-¢ planes, _’7';
nematic transitiofiFig. 9(c)], the tie lines in the §-u) plane  — 99%/dy is the local viscosity of theth branch, andy
are fairly flat, so that the stress,, changes significantly =dylie. )
through the two-phase region, and the “plateau” has definite Measurements at controlled stress or controlled strain
curvature, reflecting the initial splay of the tie lines. For rate. Although these calculations are for phase separation at
slightly lower mean compositior[§ig. 9b)] the “plateau” @ common stress, one may perform experiments at either
is straighter and flatter, as can be seeffFiy. 10, because controlled stress or strain rate. All three composite curves in
the lines are more vertical in they{u) plane. Finally, for  Fig. 9 have similar shapes, so we expect the same qualitative
compositions near the critical point the plateau is flatter stillbehavior for all compositions. Controlled strain-rate experi-
but, more interestingly, phase coexistence occurs in a regioments should follow the homogeneous flow curves, except
where the stress-strain curve at the mean composition is nfor strain rates in the coexistence regime. Here we expect the
longer nonmonotonigFig. Aa)]. This is because stability in  steady state to eventually be the banded state. This should
a two-phase system is also determined by the stability witlhresumably occur by a nucleation event after some time, for
respect to composition variations. In fact, the local chemicagtart_up strain rates less than thBmit shown in Fig. 8a),
potential u(u) has negative slope and is unstable on a segangd should occur immediately for imposed strain rates be-
ment of'this curve. The tie .Iine construction is a graphicalyond this stability limit. Conversely, upon decreasing the
expression of the explanation proposed by Schritel.  grain rate from the nematic phase, we expect nucleated be-
[28], who attributed a S'(?Ped plafcea_u to composition depenpavior for strain rates larger than thelimit, and instability
denqe O.f thg stress-strain constitutive relation. The generqlr smaller strain rates. In the metastable regime we expect
relation is given by the flow curve to follow the underlying homogeneous con-
-1 stitutive curve for the given composition, until the nucleation

, (5.3 event occurs. Interestingly, there is a small redioside the

loop in Fig. §a)] where the system is unstable when brought,
at controlled strain rate, into this region from either ttoe N
I B s o o states. This corresponds to constitutive curves with the mul-

Jdo

dy

& 1-¢
—+
7 7N

—m(o)i - ; +T
YNTIN VT Th

[}

________________ us2.555 Pt tivalued behavior of curvé in Fig. 3.
u=2.685 PSS Controlled stress experiments should exhibit similar be-
e 1 havior. Consider Fig. @). For initial applied stresses larger
' 4 than the minimum coexistence stress and less thahliimet
] of stability in Fig. 8b), we expect the system to follow the
i i homogeneous flow curve until a nucleation event occurs. Af-
. : i ter nucleation, the strain rate should increase, until either the
oS RN IR BN PR PR proper plateau strain-rate or the high strain-rate nematic state
00 02 04 06 08 10 1.2 is reached, depending on the magnitude of the stress. For
mean strain rate 5 x 10* stresses larger than the limit of stability, we expect the sys-
tem to become immediately unstable to either a banded flow
FIG. 10. &y, vs y for common stress coexistence for-5.0and  OF & homogeneous nematic phase, depending on the magni-
A=1.0. The solid lines connecting the high and low strain ratetude of the stress.
branches at each composition denote the composite flow behavior at Metastability: Experiment€Experiments on wormlike mi-
coexistence. celles[1,2,29 have found constitutive curves analogous to

(=]

-~
T

N
T

shear stress ,, x 10
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those in, say, Fig. 9. In these experiments the plateau appea 1.5 [~ - - - — - —
to be the stable states, while the portion of the constitutive
curve(a “spine”) which extends to stresses above the onsetsy
of the stress plateau appears to be a metastable branch —
which the system may remain for a finite period of time (;
under controlled stress or strain-rate conditions. References §
[2,29,51 conducted controlled strain-rate experiments and £
found that the system follows the composite cur@reghout g
“spines” that extend above the onset of the stress plateau &
Fig. 9, if care is taken to reach steady state. In these systemt
the plateaus were nearly flat, suggesting a very slight depen
dence of the flow behavior on composition. For controlled
strain-rate quenches into what corresponds to the two-phas
region of Fig. 8a), the system took some time to develop
shear bands and phase separate. This relaxation or “nucle 8 71— —
ation” time decreased as the mean strain rate was increase
[29]. It is not clear that they reached a limit of stability
(which would be analogous to thielimit in Fig. 8). The
relaxation times were of order 60—600 s, depending on tem-
perature, mean composition, and mean strain rate. We em
phasize that these experiments were on micellar solutions
which probably do not show an isotropic-nematic transition,
but still display the same qualitative stress—strain-rate rela-
tionship as curvé in Fig. 3.

Reference[44] revealed different stress plateaus upon
controlling either the strain rate or the shear stfese Fig. 7 0
of Ref.[44]) in cone-and-plate flow. In controlled stress ex-
periments, the stress plateau occurred at a stress of order 1.0
times the stress plateau observed under controlled strain-rate i, 11. Phase diagrams far=5.0 andL=4.7 at common
conditions. Moreover, the flow curve under controlled stressgress, fon=1.0.
conditions exhibited a stress maximum and then a decrease

in stress to an approximate flat plateau. One explanation fafe deviation is amplified considerably by applying flow.

could be that the “spine” never nucleated under controllediength polydispersity to widen biphasic regimes.

stress conditions, and the system smoothly transformed to
the high strain-rate phase. However, we do not have an ex-
planation for the decrease and subsequent plateau in stress
under applied strain-rate conditions. Figure 12 shows the phase diagram calculated for coex-
In other experiments, controlled stress experiments reistence between paranematicand log-rolling(L) states. As
vealed two kinds of metastable behavi@9]. For o <o with I-N coexistence, the zero shear limit corresponds to the
<0Ojump, Whereo, is the minimum stress for the onset of equilibrium biphasic region. However, for nonzero stress the
banding in controlled strain-rate experiments, the systenbiphasic region shifts in the direction of higher concentra-
maintained a strain rate on the “metastable” branch for in-tion. This is reasonable, since the stability limit of the
definite times(measured times were up to 4§). For o phase shifts to higher concentrations with increasing stress
> ojump the system accelerated, after of ordef $0and left  (Fig. 7). Note also that, since theandL phases have major
the rheometer. For these systems it is not clear whether axes of alignment in orthogonal directions, there is no criti-
stable high shear branch exists. An explanationdgp,, is  cal point. Instead, the window of phase coexistence ends
lacking. Evidently the nucleation processes governing metawhen thel phase becomes unstable to thehase.
stability at controlled stress and controlled strain rate are We have also computed phase coexistence betiesmd
different. Clearly we need more experiments and theont phases. This occurs at much higher compositians (,
about the nature of nucleation and metastability in controlled=3.0) and has a narrow width in composition due to the very
stress versus controlled strain-rate experiments. slight difference in viscosities of the two phases. Unfortu-
Polydispersity Figure 11 shows the effect of rod aspect nately, we cannot resolve this coexistence regime accurately
ratio L on the phase diagram. A smaller rod aspect ratiowithin the numerical precision of our calculations and do not
couples more weakly to the flow, requiring a slightly larger present these results here.
strain rate to induce a transition to the nematic pH#se. The existence of two possible phase diagrams for com-
11(a)]. The resulting stress is slightly smaller because, whemon stress phase separation raises an interesting question.
the system enters the two-phase region the stress is largefan one observelL coexistence? Notice thal coexistence
determined by that of the paranematic branch, which deean only occur for samples prepared at concentrations at or
creases with increasing[Fig. 11(b)]. Although the equilib- above that necessary for equilibrium phase separation. One
rium phase boundaries are cldsee Egs(3.9) and(3.10], could prepare a phase-separated isotropic-nematic mixture

stress G, X 102
o+
T T T I T T T l T T T I T T T

260 265 270
Excluded volume z

»
ol

B. Paranematic-log-rolling coexistence(l-L)
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I-N coexistence would quickly destabilize the entir&
N structure. Therefore, the three-band structNreL will not
be present in this model, and it is probable thatcoexist-
ence could only exist under flow as a metastable state. Simi-
lar conclusions may be drawn by examining the phase dia-
grams in field-variable spacg.- oy, as in Fig. 18a). In this
case the chemical potential of thphase, at-L coexistence,
is within theN region of the phase diagram foiN coexist-
ence, indicating dpossibly metastabjeinstability with re-
spect tol-N phase separation. Moreover, the chemical poten-
tials of the three phases are never the same, except at rest

where theL and N states are identical apart from the rod
orientations.

10 -

4

strain rate y x 10

0.5 |

0.0
2.55

VI. COMMON STRAIN-RATE COEXISTENCE

For coexistence at common strain rate the interface lies in
the velocity—velocity-gradient plane, and inhomogeneities
are in thez direction (see Fig. 2. The stress balance condi-
tion at the interface isr- z uniform. As befores,, is taken
care of by the pressure while,, and o, are zero by sym-
metry (and because there are no stafplecomponents in the

o
T

stress 7., x 107
Y
T

2r I | order parameter tensorWith bands in thez direction, the
! L strain rate in each band is set by the relative velocity of the
0 . . two plates(or cylinders, in a Couette devigeand the shear
255 2.60 2.65 2.70 stresses differ. The mean applied stregsis the area aver-
Excluded volume parameter u ' PP oRy
FIG. 12. Phase diagram in therf-u) and (3-u) planes for Lph:se b:“"d:"y
paranematic—log-rolling coexistence, for=5.0 andA=1.0. The 08 @ Ny, T phase boundary

dotted lines are the limits of stability of tHeandL phasegsee Fig.

7). N

0.6 |

=
and, by wall preparation, field alignment, sedimentation, or'x I
other techniques, separate the phases into two macroscopt< 04 1
domains with the nematic phase in the log-rolling geometry.

Upon applying shear, the system could then maintain co- 902

. . (a)
existence and move through thé& two-phase region. How-
ever, under controlled strain-rate conditions, theaterial 0 s L h
could decay intd-N coexistencésee Fig. 18 The resulting 257 261 :'65 269
8
— : —
6| _
3 N
< @ 2 - '
g < —— Ilimit
© 2 4 —
w4 <
771
7
t 2 —
g 2 3
< & | (b)
oL 1 f o7 o . . |
255 260 265 10 2.57 2.61 2.65 2.69
Excluded volume parameter « Excluded volume parameter u
FIG. 13. Composite phase diagrams Fdr andI-N coexistence FIG. 14. Common strain-rate phase diagram in theu) (a)

at common stress fdr=5.0 and\=1.0. We stress that this repre- and (&Xy-u) (b) planes, for.=5.0 and\=1.0. Also shown are the
sentstwo overlayed phase diagrams, and not a single phase didimits of stability of thel and N phases(calculated for a given
gram. For example, there i triple point implied by the intersec- imposed strain rate, in contrast to Figs. 7, 8, 12, and 13, in which
tion of thel-N andI-L phase diagrams. the stability was calculated for an imposed stress
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FIG. 15. Mean stress—strain-rate curves for common strain-rate coexisterce 500 and\=1.0. The solid lines denote the stabkend
N branches; the dotted line in each figure denotes the skabl@nch with which the state coexists at the low strain-rate boundary of the
coexistence region, at a strain rate marked by an open circl€he solid circles® and thick solid line denote the stress that would be
measured in the banded regime. The filled cir@®esnd thick solid line denotes the stress measured under banded conditions.

age of the stress applied to each band. The coexisting phasespect this behavior in situations where phase separation oc-
have shear stresses and compositions partitioned accordiegrs at a common strain rate into a shear-thinning state with
to only slight changes in composition. In the more concentrated
regime, the coexistence plateau traverses a wider range of
- _ concentrations and strain rates, and emerges into theNpure
$=Lht (1D, €1 phase with a higher stregthe width in strain rate of the
phase-coexistence regime is enough to overcome the shear
ny ggxy+(1 g)gxy, (6.2 thinning effect _of Fhe nem_atic pha)se
Mean constitutive relationdrigures 15 and 16 show the
wherea, is the mean shear stress. The interfacial equation§!®an stress— strain-rate relations. As with common stress
to solve are Eqs(3.27), (3.30, and(3.3D). phase separation, the shape of the “plateau” as the strain
Phase Diagram Common strain-raté-N phase coexist- rate is swept through the two-phase region is not always flat,
ence is shown in Fig. 14. In this case the tie lines are hori@nd depends on the splay of the tie lines. At higher concen-

zontal in the §-u) plane. They have a negative slope in thetrations the plateau has a positive slope while, in accord with

(ny u) plane because the paranemagthase coexists with the crossover in theo(,(y u) phase diagram, for lower con-
a denser and less viscous flow-aligniNgphase. As with centrations the plateau crosses over to negative slope, which
phase separation at common stress, there (igesy smal) usually signifies a bulk msta_b_lllty. A S|mple_ argument,
loop in the limits of stability in the control variable plane @n&logous to that for the stability of a bulk fluid, supports
- . . this. However, we note that a composite negative slope curve
(y-u) within which there are no stable homogeneous State%/\/as accessed, and apparently found stable, bgt-i. [69]
The careful reader will note that the limits of stability at a -
iven stressFig. 8) are different from the limits of stagilit under_ cqntrolled strgss condﬁmns. The negative slope in Fig.
gt a qiven stra?ﬁ rate. This is phvsically correct. and willybels(a) is likely to be inaccessible under controlled stress con-
discugssed below in éec VI Cp y y ’ ditions, and the instability argument may apply to controlled

) . i A strain-rate conditions. The general relation for the slope in
There is an interesting crossover visible in thg(u)  the composite region k28]

plane. For higher mean compositions the fluid has a higher

stress in its high strain-rate one-phase region than in its low
strain-rate one-phase region; that is, respectively above an 4.0
below the biphasic region in the Fig. @&} Conversely, for
low enough compositionsi<=2.67, the stress in the high
strain-rate region immediately outside the biphasic regime is
actuallylessthan the stress just before the system enters the
biphasic region, as can be seen by the crossing of the soli
and dashed phase boundaries in Fig. 14.

This crossover is straightforward to understand. Since
phase separation occurs at a given strain rate, and the stre
of the N branch at a given composition and strain rate is
always less than that of the correspondinigranch, we ex-
pect a decrease in the stress upon leaving the biphasic regin
in cases where the coupling to composition is less important 0.0
We saw in the analysis at common stress that compositior 0.0 0.2 R 0.4
effects are less importaffor I-N coexistencgat lower com- strain rate 7y x 10*
positions and high strain rates, where the tie lines are more A
vertical. We expect this near the critical point where the two FIG. 16. &Xy vs v for various compositions, for phase separation
phases become more and more similar. More generally, wat common strain rate arld=5

N

oy X 102
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wherem(y) is the slope of the tie line with strain rateand 2.67
o.=doy/d¢. In the limit of no concentration difference =

[6¢=0 or m(y)=x], o(y) is vertical through the two-
phase region. 2.65
Measurements at controlled stress or controlled strain
rate. For controlled strain-rate measurements we expect be-
havior similar to that for phase separation at common stress.

b4y = 0.03
1 1 1 L I 1 1

1 1 1 L ! 1

. : : 2.
For start-up experiments with mean strain rates larger than % 10

20
the minimum strain rate for coexistence at a given composi- ML (L=5)
tion, we expect the stress to follow the metastable branch _
until a nucleation event causes the stress to decrease to theF!G- 17-1-N phase boundaries for common stress phase separa-
plateau stress. The exception is a composition such as that {{gn s a function ok/L, for L =5.0. The diamonds are forh=z»

Fig. 15a), for which the composite flow curve foN coex-  (K=09=1).
istence may be mechanically unstable. Similar results should
apply upon decreasing the strain rate from the shear-inducdfickening system which phase separates at common stress
N phase to below thal limit. As before, this expectation of [52,53, under controlled stress conditions. In this case there
a nucleation event is based on a possibly misguided analogyas a singlémean strain rate for a given applied stress, and
with equilibrium systems which, nonetheless, is encouraginghe measured constitutive relation hadsishape rather than
given the experiments which see “nucleation”-type behav-the sidewaysS shape of Fig. 15.
ior in micelles under flow2,29,51.
For controlled stress, the situation is slightly different. For
compositions with mean stress—strain-rate curves of the VIl. DISCUSSION
shape of Fig. 1&), we expect similar behavior to that found A. Dependence on gradient terms
for common stress phase separation. However, for composi- ) . ) .
tions that yield curves such as Fig.(&p there is a window Gradient terms appear in all equations of motion for
of stresses for which there atkree possible states: homo- * 0 @nd for anyg, so to avoid unphysical equations without
geneous low strain-rate and high strain-rate branches, and%@dients(which cannot resolve interfaces/e must havex
banded intermediate branch. We emphasize that we have notd/K<=. In the case oK =0 and finiteg, the Q equation
determined the absolute stability of any of these branches. & motion has no explicit gradient terms and hence can, in
possibility is that the system has hysteretic behavior. FoPrinciple, support discontinuous solutions. Tkzbeeque;tlpn
example, in start-up experiments the system would remaifi@s gradients in this case, arising from the tgi ¢)* in
on thel branch until a certain stress, at which point it would the free energy density, E(8.2), so the system will eventu-
nucleate after some time and transform to either the higiglly reach a state with smooth solutions in bathand Q.
strain-rateN branch or coexistence. We cannot tell which Conversely, fog=0 there are gradient terms in both tQe
state it might go to, from this analysis, but it seems likelyand ¢ dynamics, with the latter arising from the term
that it would jump straight to thél branch. If the system #(VQ)? in the free-energy density E(.2).
jumped from thd branch to the coexistence branch, increas- Phase boundaries fer,,=0.01, 0.03 are shown in Fig.
ing the stress further wouldecreasehe strain rate and re- 17. For A €(0.0—-30.0 the phase boundaries are the same,
turn the system to thebranch. Since it originally nucleated within the precision of our numerical calculations, while
from the | branch, it seems unlikely that the original jump there is a distinct difference for=«. We have discretized
could be to the coexisting plateau. The same behaiwor the system on a mesh of 125 points, and the range of elastic
reversg would be expected upon reducing the stress from theonstants is such that the width of the interface is at least 20
high strain-rateN phase. mesh points, large enough for smooth behavior and much
Although there have been anecdotal reports of shear bandmaller than the system size.
ing in the common strain-rate geometry, there have been We cannot rule out the possibility that changes\ishift
very few such results publishdd3]. Bonnet al. [38] have  the phase boundaries by small amounts below our accuracy,
recently reported results for sheared surfactant onion gelsyhich is of order 0.1% iru, but the apparent independence
along with visual confirmation of bands in the commonof the phase boundaries ax is curious. One might be
strain-rate geometry. In controlled strain-rate experimentsempted to generalize and suggest that, for finifethere
they found constitutive curves analogous to Figs(al®r  exists a selection criterion which involves only the homoge-
15(b). In controlled stress experiments they found hysteretimeous equations of motion, rather than requiring the inho-
behavior, with the system flipping between high and lowmogenous terms as in the interface construction. An interface
strain-rate branches after some delay time, missing the coexonstruction may also be used to determine equilibrium
istence “plateau” regime. However, it is not clear that thesephase boundaries, in which case a stationary interface is
were true steady-state results. equivalent to minimizing a free energy and flnelaxational
Stable “negative-slope” behavior was seen in a sheardynamical equations derived from a variational princifig

I
30
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In the case of a van der Waals fluid this reproduces the L N N I R B

Maxwell construction. 015 ¢
A steady state equation for a single varialglenith ho-

mogeneous and inhomogeneous terms of the form 017

0= from ) + finn(del dy) (7.1)

can be integrated to yield a solvability condition for,
which is equivalent to the stable interface method. In equi-
. . . . . -0.21 —
librium f,, integrates exactly without an integrating factor, . Hy(fixed )
since it typically arises from a variation of a free-energy @
functional with respect tas, and the resultr, (correspond- =028 ot e
ing to the pressure in the van der Waals flulépends only
on fpom. Out of equilibrium, integration is not so simple, and
the solvability condition depends, generally, on the form of
the gradient term§60,35.

In the multivariable case considered here, the steady-stat L
conditions for the order parameter and composition are 017 [
coupled differential equations which are not integrable in &,

—— IL (common stress)
—— IN (common stress)
---- IN (common straln rate)

N

&H |
e
3 -0.19 _— I

stress G,y x 102

-0.15 i
i —— IN (common strain rate)
---- IN (common stress)

N

shear flow. This is because of the termsQ+Q-«x" in Eq. & 19| T hlfixedo)
(3.12 and (V?Q) - Q— Q- (V?Q) in Eq.(3.30. In extensional i ! .

flow x is symmetric, so thatx-Q+Q- k' integrates to - s
Tr(Q?k)/2, while in shear flow this term can only be inte- 021 - e
grated by introducing an integral representafi@f]. Hence T ® Trel

a first integral of the steady-state equations cannot be founc -028 ' 2—— 1l I 1 Ll
) : ) g 0 0.2 0.4 0.6 0.8 1 1.2
in shear flow, and it seems unlikely that a general condition strain rate § x 10°

involving only the homogeneous portion of the steady-state

equations can determine coexistence. While we appear to FIG. 18. Phase diagrams in the chemical poteniials stress
find, for this set of gradient terms, solvability conditions thatplane(a) and thew—strain-rate planéb). The solid lines denote the

are independent of for A<<e, the relationship of this to a phase boundaries for common stress phase coexistencein dhg
variational principle remains unknown. We have not €X-plane(a) and for common strain-rate coexistence in };hey plane
hausted the possible gradient terms. For example, highe(b). The dashed lines denote the coexisting stresses for common
order gradients in the free enerpfv2Q)?, etc] would yield  strain-rate phase separation within the common stress phase dia-
higher-order differential equations for the interfacial profile,gram(a), and vice versa irib).

and other square gradient terms sucl@agV ,V ;¢ are pos-

sible[71]. Hence, we believe that, for finite, the apparent ¢\ nich phase separation occurs. We have already argued

that we expect-L phase separation at common stress to be

the particular (simple) family of gradient terms we have cho- : .
sen The structure of the differential equations describing themetastable with respect feN phase separation at common

. stress. What about the relative stabilitylefl phase separa-

steady states may change abruptlyXerw, for which aterm . ith . -
is lost in the differential equations, leading to a distinctlytlon "?It e|_t er common stress or common strain rate-
different selection criteria and the shifted phase boundary in_ Wit limited one-dimensonal calculations for systems of
Fig. 17. Unfortunately, this particular set of equations is toodifferent s_ym_metry(annular bands at common gtress and
complex for this kind of analysis. For example, in a study ofStacked disklike bands for common strain jateis impos-
a simpler constitutive model, one can demonstrate that thélble to calculate the stability of one interface p'r.oﬂle with
selected stress depends on the detailed form of the gradieffiSPect to another. Renardy calculated the stability of com-
terms[35]. mon stress coexistence to capillary fluctuatipé8], which

Several workers have claimed to find an equal-area coris @ start, and such a stability analysis has been performed, in
struction on the stress—strain-rate constitutive cu®@.  part, on the layer orientation of smectic systems in flaé].
That is, the “plateau” as the system traverses the two-phasklowever, some insight can be obtained by examining the
region is said to describe a path such that the areas above afghase diagrams” in the chemical potential-field variable
below the plateau, enclosed by the plateau line and the ureither stress or strain-ratplanes. The solid lines in Fig. 18
derlying constitutive curve, are the same. This is not trueare analogous to lines of phase coexistence in, for example,

here, as can be seen in Fig. 15. the pressure-temperature plane in a simple fluid.
_ o Consider Fig. 16). Here,(}xy and u are the proper field
B. Which phase separation is preferred? variables for phase separation at a common stress, and the

Having calculatecboth common strain rate and common Solid lines denote thé-L and I-N phase boundaries. The
stress phase separation for the same system, and noticiﬂgshed line denotes the range of stresses at coexistence for
from Figs. 13 and 14 that there are compositions and sheg@ommon strain-rate phase separaibig. 18a)], for which
conditions which lie inside the two-phase regions of all threestress is a generalized density variable and strain rate the
calculated phase separations, we must address the questiiegld variable.
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FIG. 19. Phase diagrams in tk@ w-vy and(b) u-0xy planes forl-N coexistencdthe N state is stable for higher strain rate or stress,
respectively. The thin vertical solid lines denote phase coexistence at common strain rate and staeasdib), respectively. The broken
lines marked ,, andN,, denote the coexisting states at common strain rate intls,, plane(b), while the broken line$, andN,, denote
the coexisting states at common stress, inp;hé plane.(c) is the mean stress vs strain-rate curve. Shown is af&HC taken under the
proposition that the system maintains a global minimum in chemical potential. Rénat coexistence in thg-o,, plane(b), and hence
corresponds to two points, on linesandN,, in the u- y plane(a) for the two different strain rates of the coexisting phases. Similarly, point
C corresponds to coexistence at common strain rate)jrwith the coexisting phases at different stresses lying on lipemdN,, in (b), at
the two pointsC. PointsB andB’ are coincident ir(c), and correspond to a crossover from phase separation at common(Bjresphase
separation at common strain raf8’). The pathA-B-C in (c) may be traced inb) by following the upper horizontal arrow until phase
separation at common stress occurd\athen along the segmenésB in (b) or A-B’ in (a) until phase separation at common strain rate
occurs aB’. From this point untilC the system phase separates albpgndN,,, with a mean stress given by the thick diagonal solid arrow
B-C in (b) and the thick segmer®’-C in (a). The system emerges from the two-phase regicdb @t N,,, and continues through on the
high strain rate branch.

Figure 18a) indicates that, for a system undergoirly at An alternative possibility is presented in Fig. 19 if one
a common strain rate, the chemical potential and stress fairgues that in steady state, among the possible phases which
the | phase falls within the single phad¢ region of the are compatible with the interface solvability condition, the
commonstressphase diagram. Hence, we expect thphiase  chemical potential reaches its absolute minimum. Consider
to be unstabléor metastablewith respect to phase separa- increasing the strain rate for a given mean concentration. The
tion at common stress. Similarly, the control parametershick horizontal arrows in Figs. 18-19c) denote the

(chemical potential and stresfor the N phase coexisting at : :

a common strain rate lie within the single phagsegion for /urfa-xy) and u() paths for the homo_geneous h'gh and low
. . ear rate states, in the two phase diagrams. In Fig 1t¢e

common stress phase separation, which we also expect to Beth isA-B'-C-D ., in Fig. 19b) th th iSA-B-C-D d

unstable(or metastable Conversely, for a system coexisting Pam S4B =L, In Fg. € path IsA-b-L-U, an

at a common stress thephase lies within the single phase " Fig. 19(c) the path isA-B-C-D . o -
region of the common strain-rate phase diagf&g. 18b)], This path ensures that the system maintains the minimum

and similarly for theN phase. This suggests that phase Sepac_:hemical potential for an imposed strain rate. Upon increas-

ration at a common strain rate is unstalpte metastable mr?at;:erztr%?] Lar:figrgn:ezzfgﬁ’eéhztsﬁ;iecrg reorir:ﬁunf];r;ethseeogia-
with respect to phase separation at common stress, whilg 9 ' P P P

phase separation at a common stress is stable. ration a.t comm(?n stress occurs. !\lote thapans twg points
Note that, ultimately, this selection of phase-coexistence@f coexistence in the.-y plane[Fig. 19a)] on the linesl,
geometries follows from the transition being a shear-thinning@d N, . Upon further increasing the strain rate, the system
transition; for a shear-thickening transition the situationcontinues to phase-separate at common stress, following the
could be reversed. In this case phase coexistence at a cofegmenA-B in Fig. 19b) and the two(coexisting segments
mon strain rate and a givem would imply a shear-induced A-B in Fig. 19a. The mean chemical potential and strain
phase(analogous to thél phase with a higher stress than rate follow the diagonal segmeAtB " in Fig. 19a). Upon
the | phase. If the phase-coexistence line for common stregé§creasing thestrain rate aboveB, the system can continue
(strain rate lay within a loop corresponding to the stressest0 maintain its Iowes_,t chem_lcal potential by phgse separating
(strain rates for common strain-rategstress coexistence, With & common strain rate in the two phases, i.e., with shear
then common strain-rate coexistence would be expected #ands in the vorticity direction. Hence, the system next fol-
be stable, by analogy with the isotropic-nematic shear thinlows the pathB’-C in Fig. 19a) (u-y plane and the two
ning model. Obviously this argument is delicate. In a fluid coexisting path®'-C in Fig. 19b) (u-oy, plang, with the
where only one-phase coexisten@ither common stress or mean chemical potential and stress following the diagonal
common strain rafeis supported by the dynamical equa- segmentB-C in Fig. 19b). Finally, upon increasing the
tions, this argument is moot. strain rate aboveC, the system continues along the high
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strain-rate branch. The thin diagonal lines with arrows, o of ay
B’-D in Fig. 19@) andB-D in Fig. 19b), show the path that ) 5x:{— — —} . (7.9
would be taken if the system passed through the two-phase IX gy X

region entirely with a common stress in the two phases. This B

scenario follows from minimizing the chemical potential, ={M,+ M} ox. (7.5
and its correctness, of course, should be further examined by
the full time evolution of the original dynamic equations.

It is probable that boundary conditions also play a role.
Consider a Couette device. Typically the walls provide uni- . e o
form boundary conditions in the azimuthal direction, while correspond to dn‘feren'g stab|I_|ty criteria. .

. : . . The question of which spinodal could be observed in an
the slight inhomogeneity of Couette flow induces an asym-

metry between the inner and outer cylinders. The Slightlyexperlment relies on the accuracy of prescribed stress and

higher stress near the inner wall provides a preference for th%rescnbed strain-rate rheometers. For a rheometer operating
E\#a prescribed strain rate, thendik goes unstable through

high strain-rate nematic phase, and hence might enhance t . .

stability of common stress phase separation. Similarly, the'” [in E_q.(7.2)], the stress increases dqe to @3) and no

intrinsic inhomogeneityalthough weakerin cone-and-plate attempt is made to contro'l I, Ieadmg to mStab'“tY' However,

rheometry induces a preference for the common stress inte onsider a rheometer Wh'Ch. maintains a prescribed stress. If
he system goes unstable in E@.2), the bulk stress will

facial configuratior{46]. 0(Ehange due to E(7.3). A sensitive and fast enough rheom-

We are also unable to say anything about the number T er will respond by adiusting the strain rate accordinalv. to
spacing of bands. Analogies with equilibrium systems sug- Wi P y adjusting : gty

gest that phase separation would coarsen until the syste[ﬂam_tam the imposed stress. Hence, instability would be de-
formed two bands at different strain ratédsr phase separa- erm_m_ed by _the Su.”.v'f" oM, . .

tion at a common stregsThis is the behavior seen in visu- Slm!larly, in equilibrium systems a Iogus of ;tabmty may
alizations of flow in Couette, cone-and-plate, and pipe geompe. deﬂned b.y’ for .exa”.‘p'ev th? diverging of |so_thermal or
etries, where the intrinsic inhomogeneity provides a “seed”""d""‘b"’ltIC or isobaric or isochoric response functicorsthe

: : ishing of the appropriate modujugor example, the iso-
for macroscopic phase separat{@y4-47,52 Recent visu- vanis . . A .
alization of banding in lamellar surfactant systel@8] indi- thermal and adiabatic compressibilities andK s differ by a

cates that phase separation at a common strain rate can dgrm prpportione}l _to the quotient_ of the_ square of the_ thermal
hibit bands (disklike bands in Couette flowwhose initial ~ €XPansion coefficient, and the isobaric heat capacity:

The limit of stability for common strain rate is calculated
using the fluctuation matrii,,, while the limit of stability
for common stress was calculated usiMig+ 6M,,. These

spacing depends on the applied strain rate and that coarsen in vTa?
time. Unlike common stress bands, which are expected to Kr—Kg= P (7.6)
(and d9 form macroscopic bands in Couette flow, there is no Cp

boundary effect in Couettéaside from perhaps sedimenta- wherev is the specific volumeK; ! vanishes along the spin-
tion) which would encourage common strain-rate bands to : pecitic v T _1 9 b
dal linevy(T), while it is evident thaK s~ (proportional to

coalesce readily. Normal stresses may play a role in thi§ . o
process. y s the sound spegddoes not. However, in equilibrium, the

critical point is uniquely defined in phase space, which is

related to the fact that, for example, pressure is a unique

functionof the volume, and is in fact a state variable. Con-
In calculating the phase diagrams, we have calculated theersely, we can see from the shape of the stress—strain-rate

stability of the fluid under conditions of either fixed strain curves for the Doi modefe.g., Figs. &)-3(e)], that the

rate or fixed stress. These limits of stability, analogous tastress can be a multivalued function of strain rate; i.e., it is

spinodals in equilibrium systems, are displayed in Figs. &ot a state function. Hence there is no compelling reason to

and 14. Note that the stability limits and critical points differ, expect critical points at imposed strain rate to be the same as

depending on the control variablstresso or strain ratey). critical points at imposed stress. Similarly, tttee spinodal

To see why this is, note that schematically the dynamicaPr locus of stability is uniquely defined in an equilibrium

C. Stability at prescribed stress or prescribed strain rate

equations of motion have the form system because of the convexity requirement on the entropy
_ [72], and there is no such universal convexity requirement
Ix=1(x,y), (7.2 (barring entropy production, which is minimized only under

restricted conditions, and only locally rather than globally
for nonequilibrium systems.
7=9(x.), 73 D. An analogy with equilibrium systems?

The liquid crystalline suspension under flow, indeed any
wherex comprises the dynamical variablésder parameter system which undergoes a macroscopic bulk flow-induced
Q and compositiorp) . The second equation relates the stresphase transition, is analogous to an equilibrium ternary sys-
to strain rate and dynamical variables at steady g@tén  tem comprising specie8, B, and solvent. In our case, the
the zero Reynolds number limitwhich implies that the roles of A andB are played by the rigid-rod compositiah
strain ratevy, for a given stress, is a functiop= y(o,X). and either the stress or strain ratey, depending on the
Consider fluctuations about a steady stage x=6x+Xy.  nature of the phase separation. For phase separation at com-
The dynamics for the fluctuation obeys mon stress, the phase diagram in the stress-composition
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planeo- ¢ is analogous to the.,- g plane for the equilib-  rolling nematiclL), where only two phases existed in equilib-
rium system, while they- ¢ plane is analogous to thg,-¢g  fium. We expect-N phase coexistence to be the stable con-

plane. In either case, the density variableg s} in flow and figuration (Fig. 13, althoughl-L phase coexistence could
{ba. b} in the analogous equilibrium system, are different€Xist as a metastable state with approprate preparation. We

in the two coexisting phases. The slope of the “plateau” indo not expect three-phase coexistence for this model.

. . (vi) We have demonstrated how to calculate the mean
the -y plane, as the system traverses the two-phase region ) ) —— )
of the phase diagram, is analogous to a slope inuthess stress—strain-rate ielitlonshtp(y) in the coexistence re-
plane, the latter indicating that the chemical potent@  gion. The shape of(y) is determined by the composition
osmotic pressupeof the two phases varies across the coex-and strain rates of the coexisting phaf2g).
istence region. (vii) A phase-separated system can exhibit an apparently

Can this analogy be extended to the possibility of phasgnstable constitutive relation, with negative slape,, /7.

separation at common stress common strain rate? Cer- Experiments have accessed such negative slope composite
tainly, one can consider a ternary system under conditions Qfyrves under controlled stregsther than controlled strain-
either imposedp, or imposedu,, for which one generally  atg conditions[69].
expects difference spinodal lines. That is, the spinodal is de- (yjii) Our method of solution is general and relies on the
termined by the instability of a matrix in the two- existence of a set of dynamical equations of motion for the
dimensional space spanned #x and ¢g, and fixings or  structural order parameter of the particular transition, includ-
Ha projects this instability onto different subspaces. Experiing the dynamic response to inhomogeneities.
mental conditions may dictate that the spinodal line under (ix) For A=g/K finite, the phase boundaries we have
fixed ¢ is more likely to be seen, sineg, is conserved and  found are, within our accuracy, independent of the relative
cannot equilibrate quickly to satisfy an imposed. How-  magnitude of the gradient terms in our free energy. Although
ever, we are not aware of any ternary equilibrium system fokhis suggests that, for the restricted set of inhomogeneities
which the equilibrium coexistence conditions can differ; thatwe have incorporated, a selection criterion exists involving

is, equilibrium isalwaysspecified by equality ofis andug  only the homogeneous equations of motion, this is not true in

in the two phases, and never by equalitydf. general for complex fluids in floW85]. For A=, the phase
boundaries are slightly shifted.
VIll. SUMMARY (x) Studies at different aspect ratios suggest that shear

flow enhances polydispersity effects relative to their effect
‘on equilibrium phase boundaries.

We close by enumerating several open questions. First,
stems such as wormlike micelles probably possess some

In this work we have proposed a straightforward phenom
enological extension to the Doi model for a solution of rigid-
rod particles. We have added entropic terms and includeg

!nhohmog(;neou_?htermg n ordletzr tc} ?ﬁlcultats phase s;—:-pl)larau% mbination of a perturbed isotropic-nematic transition and a
In shear flow. The main resufts ot this study are as 1o OWS'dynamic instability of the molecular constitutive relation. It

(M) F;hase separation TaY occtur “f?fherd;‘f)”d'“tof‘st O; COM5' conceivable that suitable compositions of these systems
mon SIréssor common strain rate, wi imerent Interface oy 19 yield a stress—strain-rate composition surfdeg. 4)

orientations with respect to flow geometry for the two CaSeSyjith multiple folds. Second, it would be desirable to have a

(i) Although both phase sepa_ratlons are possible, thﬁwodel shear-thickening system in which to calculate proper-
phase diagrams in the-oy, and -y planes(Fig. 18 sug-  ties of banded flows, to compare and contrast with the shear-
gest that phase separation at a common strain rate is Metginning system studied here and to understand experiments
stable. This can be traced, for this m0d9|, to the Shearon a wide range of systemS, inc|uding C|ays and surfactant
thinning character of the transition. For a shear-thickenin%ystems_ Third, we have not addressed the number and pos-
transition an equivalent argument suggests tifdboth are  siple coarsening of bands and band configurations, and the
kinematic possibilities common stress phase separation iskinetics of phase separation has hardly been treated theoreti-
metastable with respect to strain-rate phase separation. cally [2], with experiments also at an early std@e29,51.

(iii) The limits of stability (“spinodals”) and critical  Finally, we do not yet know the conditions which may, if at

points for systems at prescribed stress and prescribed stragn, distinguish between common stress or common strain-
rate differ; the difference of spinodals is similar to equilib- rate phase coexistence.

rium behavior, while the difference of critical points is re-
lated to the fact that neither stress or strain rate are always
unique state functions.

(iv) An argument based on minimizing the chemical po- Itis a pleasure to acknowledge helpful conversations and
tential predicts a complex crossover from common stress toorrespondence with R. Ball, J.-F. Berret, G. Bishko, D.
common strain-rate phase separation for controlled strairBonn, M. Cates, F. Greco, J. Harden, S. Keller, G. Leal, T.
rate experiments. The veracity of this assumption is unMcLeish, D. Pine, G. Porte, O. Radulescu, N. Spenley, L.
known. Walker, and X.-F. Yuan. C.-Y.D.L. acknowledges funding

(v) We have calculated phase coexistence among threfeom St. Catharine’s College, Cambridge and {iaiwan
phases(paranematicl, flow-aligning nematicN, and log- National Science CounciNSC 88-2112-M-008-005
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